Đề kiểm tra 45 phút (1 tiết ) - Đề số 1 - Chương 2 - Hình học 8


Giải Đề kiểm tra 45 phút (1 tiết ) - Đề số 1 - Chương 2 - Hình học 8

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Bài 1.Tính diện tích của tam giác vuông cân biết cạnh huyền là 4 cm.

Bài 2. Cho hình thang ABCD \(\left( {AB// CD} \right)\) và AB < CD. Qua trung điểm M của cạnh bên BC kẻ đường thẳng song song với AD cắt CD ở E và AB ở F.

a) Chứng minh tứ giác AFED là hình bình hành.

b) Chứng minh \({S_{ADE}} = {S_{ABEC}} = \dfrac{1}{2}{S_{ABCD}}.\)

Bài 3. Cho tứ giác ABCD. Trên các tia đối của tia BA, CB, DC, AD lần lượt lấy các điểm E, F, G, H sao cho BE = BA, CF = CB, DG = DC và AH = AD. Chứng minh rằng: \({S_{ABCD}} = \dfrac{1}{ 5}{S_{EFGH}}.\)

LG bài 1

Phương pháp giải:

Đặt hai cạnh góc vuông AB, AC là x

Áp dụng định lý Py-ta-go

\({S_{ABC}} = {1 \over 2}AB.AC\)

Lời giải chi tiết:

Đặt hai cạnh góc vuông AB, AC là x ta có: 

\({x^2} + {x^2} = {4^2}\) (định lý Py – ta – go)

\( \Rightarrow 2{x^2} = 16 \Rightarrow {x^2} = 8 \Rightarrow x = \sqrt 8 \left( {cm} \right)\)

Do đó: \({S_{ABC}} = {1 \over 2}AB.AC = {1 \over 2}{\left( {\sqrt 8 } \right)^2} = 4\left( {c{m^2}} \right)\)

LG bài 2

Phương pháp giải:

Áp dụng: Tứ giác có 2 cặp cạnh đối song song là hình bình hành

Lời giải chi tiết:

Ta có \(\Delta BFM = \Delta CEM\left( {c.g.c} \right) \)

\(\Rightarrow {S_{BFM}} = {S_{CEM}}\)

Do đó: \({S_{ABCD}} = {S_{AFED}}\)

AFED là hình bình hành (\(AF//DE\) và \(AD// FE\) )

\( \Rightarrow \Delta ADE = \Delta {\rm{EFA}}\left( {c.c.c} \right)\)

\( \Rightarrow {S_{ADE}} = {S_{EFA}} = {1 \over 2}{S_{AFED}} \)\(\,= {S_{ABME}} + {S_{BFM}} = {S_{ABME}} + {S_{CEM}}\)

Do đó: \({S_{ADE}} = {S_{ABEC}} = {1 \over 2}{S_{AFED}} = {1 \over 2}{S_{ABCD}}\)

LG bài 3

Phương pháp giải:

Hai tam giác có cùng chiều cao và độ dài cạnh đáy bằng nhau thì có diện tích bằng nhau

Lời giải chi tiết:

Ta có BA là trung tuyến của \(\Delta HBD\) nên \({S_{BAH}} = {S_{BAD}}.\)

HB là trung tuyến của \(\Delta HEA\) nên \({S_{BAH}} = {S_{BEH}}.\)

Do đó \({S_{HEA}} = 2{S_{BAD}}.\)

Chứng minh tương tự có:

\({S_{EFB}} = 2{S_{ABC}}\)

\({S_{CFG}} = 2{S_{BCD}}\)

\({S_{HDG}} = 2{S_{ADC}}\)

Mà \({S_{EFGH}} = {S_{HEA}} + {S_{EFB}} + {S_{CFG}} + {S_{HDG}} + {S_{ABCD}}\)

               \( = 2\left( {{S_{BAD}} + {S_{BCD}}} \right) + 2\left( {{S_{ABC}} + {S_{ADC}}} \right) + {S_{ABCD}}\)

               \( = 2{S_{ABCD}} + 2{S_{ABCD}} + {S_{ABCD}} = 5{S_{ABCD}}\)

\( \Rightarrow {S_{ABCD}} = \dfrac{1 }{ 5}{S_{EFGH}}.\)

Loigiaihay.com


Bình chọn:
4.6 trên 10 phiếu

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

Tham Gia Group Dành Cho Lớp 8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí