Đề kiểm tra 15 phút - Đề số 5 - Bài 4 - Chương 2 - Đại số 9


Giải Đề kiểm tra 15 phút - Đề số 5 - Bài 4 - Chương 2 - Đại số 9

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Bài 1. Viết phương trình đường thẳng (d) qua điểm \(M(-2; 0)\) và cắt trục tung tại điểm có tung độ bằng 3.

Bài 2. Tìm m để hai đường thẳng sau đây song song: 

\(y = (m + 1)x + m\) (d1) và \(y = \left( {\sqrt 2  + 1} \right)x + 3\,\left( {{d_2}} \right)\)

Bài 3. Chứng tỏ rằng họ đường thẳng (d) : \(y = mx + m + 1\) luôn đi qua một điểm cố định.

Bài 4. Tìm tọa độ giao điểm của hai đường thẳng :

\(y = -4x\) (d1) và \(y = {1 \over 2}x + 3\,\left( {{d_2}} \right)\)

LG bài 1

Phương pháp giải:

Phương trình đường thẳng (d) có dạng : \(y = ax + b (a ≠ 0)\)

Xác định được tung độ gốc bằng 3, từ đó thay tọa đọ điểm M vào phương trình đường thẳng (d) để tìm hệ số a.

Lời giải chi tiết:

Phương trình đường thẳng (d) có dạng : \(y = ax + b (a ≠ 0)\)

Vì đường thẳng (d) cắt trục tung tại điểm có tung độ bằng 3 nên tung độ gốc bằng \(3 ⇒ b = 3\). Khi đó: \(y = ax + 3\) 

\(M \in \left( d \right) \Rightarrow 0 = a.\left( { - 2} \right) + 3 \Rightarrow a = {3 \over 2}\)

Vậy : \(y = {3 \over 2}x + 3\)

LG bài 2

Phương pháp giải:

Hai đường thẳng \(y = ax + b\) và \(y = a'x + b'\) song song với nhau khi và chỉ khi \(a = a', b ≠ b'\).

Lời giải chi tiết:

(d1) // (d2) \( \Leftrightarrow \left\{ {\matrix{   {m + 1 = \sqrt 2  + 1}  \cr   {m \ne 3}  \cr  } } \right. \Leftrightarrow m = \sqrt 2 \)

LG bài 3

Phương pháp giải:

Đưa về dạng phương trình bậc nhất ẩn m: \(Am+B=0\) đúng với mọi m khi \(A=0\) và \(B=0\)

Lời giải chi tiết:

Gọi \(M({x_0};{\rm{ }}{y_0})\) là điểm cố định mà họ đường thẳng (d) luôn đi qua khi m thay đổi.

Ta có: \(M \in \left( d \right) \Rightarrow {y_0} = m{x_0} + m + 1\) (với mọi m)

\( \Rightarrow \left( {{x_0} + 1} \right)m + 1 - {y_0} = 0\) (với mọi m)

Phương trình bậc nhất của m có vô số nghiệm 

\( \Leftrightarrow \left\{ {\matrix{   {{x_0} + 1 = 0}  \cr   {1 - {y_0} = 0}  \cr  } } \right. \Leftrightarrow \left\{ {\matrix{   {{x_0} =  - 1}  \cr   {{y_0} = 1}  \cr  } } \right.\)

Vậy \(M(-1; 1)\) là điểm cố định cần tìm.

LG bài 4

Phương pháp giải:

Giải phương trình hoành độ giao điểm để tìm x và thay x vào 1 trong 2 hàm số ban đầu để tìm y.

Lời giải chi tiết:

Phương trình hoành độ giao điểm của (d1) và (d2):

\( - 4x = {1 \over 2}x + 3 \) 

\(\Leftrightarrow  - 8x = x + 6 \)

\(\Leftrightarrow x =  - {2 \over 3}\)

Thế \(x =  - {2 \over 3}\) vào phương trình của (d1), ta được \(y = {8 \over 3}\)

Tọa độ giao điểm là \(\left( { - {2 \over 3};{8 \over 3}} \right)\)

 Loigiaihay.com


Bình chọn:
3.1 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay

Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí