Bài tập 11 trang 90 Tài liệu dạy – học Toán 8 tập 2


Giải bài tập a) Ở hình a, cho biết

Đề bài

a) Ở hình a, cho biết \(\widehat N = \widehat E,\,\,\widehat M = \widehat D,\,\,MP = 18,\,\,\)\(DF = 24.\) Tính y

b) cho hình thang ABCD (hình b). Hãy điền vào chỗ trống:

\(\Delta AMB \sim \Delta .....;\)

\({{AM} \over {.....}} = {{.....} \over {DC}} = {{MB} \over {.....}};\,\,x = ...;\,\,\,y = ...\,\,\,\)

Lời giải chi tiết

a) Xét ∆MNP và ∆EDF có: \(\widehat N = \widehat E(gt)\) và \(\widehat M = \widehat D(gt)\)

\(\Rightarrow \Delta MNP \sim \Delta DEF(g.g)\)

\( \Rightarrow {{MP} \over {DF}} = {{NP} \over {EF}} \)

\(\Rightarrow {{18} \over {24}} = {{y + 3} \over {32}} \)

\(\Rightarrow {3 \over 4} = {{y + 3} \over {32}} \)

\(\Rightarrow 4(y + 3) = 96 \)

\(\Rightarrow y + 3 = 24 \Rightarrow y = 21.\)

b) • \(\Delta AMB \sim \Delta CMD\) vì \(\widehat {AMB} = \widehat {CMD}\) (hai góc đối đỉnh) và \(\widehat {MAB} = \widehat {MCD}\) (hai góc so le trong và AB // CD)

• \({{AM} \over {CM}} = {{AB} \over {DC}} = {{MB} \over {MD}} \Rightarrow {6 \over {15}} = {8 \over x} = {y \over {10}}\)

Từ đó suy ra:

\(\eqalign{  & {6 \over {15}} = {8 \over x} \Rightarrow x = 20  \cr  & {6 \over {15}} = {y \over {10}} \Rightarrow y = 4 \cr} \)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10 năm học 2021-2022, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài