Trả lời câu hỏi 3 Bài 6 trang 25 SGK Toán 9 Tập 1


Trả lời câu hỏi 3 Bài 6 trang 25 SGK Toán 9 Tập 1. Đưa thừa số ra ngoài dấu căn..

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Đưa thừa số ra ngoài dấu căn:

LG a

\(\sqrt {28{a^4}{b^2}} \) với \(b \ge 0.\)

Phương pháp giải:

Sử dụng công thức đưa thừa số ra ngoài dấu căn:

Với \(B \ge 0\) ta có \(\sqrt {{A^2}B}  = \left| A \right|\sqrt B  = \left\{ \begin{array}{l}A\sqrt B \,\,khi\,A \ge 0\\ - A\sqrt B \,\,khi\,A < 0\end{array} \right.\) 

Lời giải chi tiết:

Ta có \(\sqrt {28{a^4}{b^2}}  = \sqrt {{{7.2}^2}.{{\left( {{a^2}} \right)}^2}{b^2}}  \)\(= 2{a^2}\left| b \right|\sqrt 7 \)  

Mà \(b \ge 0 \Rightarrow \left| b \right| = b\) nên \(\sqrt {28{a^4}{b^2}}  = 2{a^2}b\sqrt 7 \)

LG b

\(\sqrt {72{a^2}{b^4}} \) với \(a < 0\) 

Phương pháp giải:

Sử dụng công thức đưa thừa số ra ngoài dấu căn:

Với \(B \ge 0\) ta có \(\sqrt {{A^2}B}  = \left| A \right|\sqrt B  = \left\{ \begin{array}{l}A\sqrt B \,\,khi\,A \ge 0\\ - A\sqrt B \,\,khi\,A < 0\end{array} \right.\) 

Lời giải chi tiết:

Ta có \(\sqrt {72{a^2}{b^4}}  = \sqrt {{2^2}{{.2.3}^2}.{a^2}.{{\left( {{b^2}} \right)}^2}}  \)\(= 2.3.\left| a \right|.{b^2}\sqrt 2 \)

Mà \(a < 0 \Rightarrow \left| a \right| =  - a\) nên \(\sqrt {72{a^2}{b^4}}  =  - 6a{b^2}\sqrt 2 .\) 

Loigiaihay.com


Bình chọn:
3.9 trên 12 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài