Lý thuyết Hàm số y = ax^2 (a ≠ 0)


Tập xác định của hàm số

1. Tập xác định của hàm số \(y = a{x^2}\) \((a ≠ 0)\)

Hàm số \(y = a{x^2}\) \((a ≠ 0)\) xác định với mọi giá trị của \(x ∈ R.\) nên tập xác định \(D=R.\)

2. Tính chất

Xét hàm số \(y = a{x^2}\) \((a ≠ 0)\) 

- Nếu \(a > 0\) thì hàm số nghịch biến khi \(x < 0\) và đồng biến khi \(x > 0\).

- Nếu \(a < 0\) thì hàm số đồng biến khi \(x < 0\) và nghịch biến khi \(x > 0\).

3. Nhận xét

Xét hàm số \(y = a{x^2}\) \((a ≠ 0)\)

- Nếu \(a > 0\) thì \(y > 0\) với mọi \(x ≠ 0; y = 0\) khi \(x = 0\). Giá trị nhỏ nhất của hàm số \(y = 0\).

- Nếu \(a < 0\) thì \(y < 0\) với mọi \(x ≠ 0; y = 0\) khi \(x = 0\). Giá trị lớn nhất của hàm số là \(y = 0\).

Loigiaihay.com


Bình chọn:
4.1 trên 58 phiếu

Các bài liên quan: - Bài 1. Hàm số y = ax^2 (a ≠ 0)

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài