Đề kiểm tra 15 phút - Đề số 2 - Bài 1 - Chương 4 - Đại số 9


Giải Đề kiểm tra 15 phút - Đề số 2 - Bài 1 - Chương 4 - Đại số 9

Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Bài 1: Cho hàm số \(y = f\left( x \right) = {x^2}.\)

a) Vẽ đồ thị của hàm số.

b) Tìm giá trị lớn nhất, nhỏ nhất của hàm số khi x thỏa mãn \(0 \le x \le 2.\)

Bài 2: Tìm giá trị của m, biết rằng hàm số \(y = \left( {1 - m} \right){x^2}\) đồng biến khi \(x > 0.\)

Bài 3: Cho hàm số \(y = \left( {m - 1} \right){x^2}\). Tìm giá trị của m biết đồ thị (P) của hàm số đi qua điểm \(A(2; − 4).\)

LG bài 1

Phương pháp giải:

a.Các bước vẽ đồ thị:

+Tìm tập xác định của hàm số.

+Lập bảng giá trị (thường từ 5 đến 7 giá trị) tương ứng giữa x và y.

+Vẽ đồ thị và kết luận.

b. Chứng minh hàm số đồng biến và sử dụng: 

\(a \le x \le b \Leftrightarrow f\left( a \right) \le f\left( x \right) \le f\left( b \right)\)

Lời giải chi tiết:

Bài 1: a) Bảng giá trị :

x

− 2

− 1

0

1

2

y

4

1

0

1

4

Đồ thị của hàm số là một parabol có đỉnh là O và nhận trục Oy làm trục đối xứng.

b) Ta có \(a = 1 > 0\) nên hàm số đồng biến khi \(x > 0.\)

Vậy \(0 \le x \le 2 \Rightarrow f\left( 0 \right) \le f\left( x \right) \le f\left( 2 \right)\)\(\; \Rightarrow 0 \le {x^2} \le 4.\)

Vậy giá trị nhỏ nhất của hàm số bằng 0, khi \(x = 0\); giá trị lớn nhất của hàm số bằng 4, khi \(x = 2.\)

LG bài 2

Phương pháp giải:

Do x>0 nên hàm số đồng biến khi a>0

Lời giải chi tiết:

Bài 2: Hàm số đồng biến khi \(x > 0  \Leftrightarrow  1 – m > 0  \Leftrightarrow  m < 1.\)

LG bài 3

Phương pháp giải:

Thế tọa độ của A vào hàm số ta tìm được m

Lời giải chi tiết:

Bài 3: Ta có \(A \in (P)  \Rightarrow  - 4 = \left( {m - 1} \right){.2^2} \)

\(\;\Rightarrow m - 1 =  - 1 \Rightarrow m = 0.\)

Loigiaihay.com

 


Bình chọn:
3.7 trên 7 phiếu

Các bài liên quan: - Bài 1. Hàm số y = ax^2 (a ≠ 0)

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài