Bài 1 trang 30 SGK Toán 9 tập 2

Bình chọn:
4.3 trên 50 phiếu

Giải bài 1 trang 30 SGK Toán 9 tập 2. Diện tích S của hình tròn được tính bởi công thức

Đề bài

Diện tích \(S\) của hình tròn được tính bởi công thức \(S = \pi {R^2}\), trong đó \(R\) là bán kính của hình tròn.

a) Dùng máy tính bỏ túi, tính các giá trị của \(S\) rồi điền vào các ô trống trong bảng sau (\(\pi ≈ 3,14\), làm tròn kết quả đến chữ số thập phân thứ hai).

\(R\) (cm)

\(0,57\)

\(1,37\)

\(2,15\)

\(4,09\)

\(S = \pi R^2\) (cm2)

       

 b) Nếu bán kính tăng gấp \(3\) lần thì diện tích tăng hay giảm bao nhiêu lần ?

c) Tính bán kính của hình tròn, làm tròn kết quả đến chữ số thập phân thứ hai, nếu biết diện tích của nó bằng \(79,5\) \({cm^2}\) 

Phương pháp giải - Xem chi tiết

+) Để tính \(f(x_0)\) ta thay \(x=x_0\) vào \(f(x)\).

+) Áp dụng công thức: \(S= \pi . R^2\). Biết \(S\) và \(\pi =3,14\) thay vào tính được \(R\).

Lời giải chi tiết

a) Dùng máy tính bỏ túi, tính các giá trị của \(S\) như sau:

+) \(R=0,57 \Rightarrow S= 3,14 . 0,57^2=1,020186 \approx 1,02.\)

+) \(R=1,37 \Rightarrow S= 3,14 . 1,37^2=5,893466 \approx 5,89.\)

+) \(R=2,15 \Rightarrow S= 3,14 . 2,15^2=14,51465 \approx 14,51.\)

+) \(R=4,09 \Rightarrow S= 3,14 . 4,09^2=52,526234 \approx 52,53 \)

Ta được bảng sau:

\(R\) (cm)

\(0,57\)

\(1,37\)

\(2,15\)

\(4,09\)

\(S = \pi R^2\) (cm2)

\(1,02\)

\(5,89\)

\(14,51\)

\(52,53\)

b) Vì bán kính tăng gấp \(3\) lần nên ta có bán kính sau khi tăng là: \(R'=3R\).

Khi đó, diện tích hình tròn là: \(S'=\pi . R'^2=\pi . (3R)^2=\pi . 9 R^2=9 \pi .R^2=9.S\)

Vậy nếu bán kính tăng gấp \(3\) lần thì diện tích tăng \(9\) lần.

c) Biết \(S=79,5\) \(cm^2\)

Ta có: \(S= \pi . R^2 \Leftrightarrow 79,5 = 3,14 . R^2\)

\(\Leftrightarrow R^2= \dfrac{79,5}{3,14} \approx 25,32\)

\(\Leftrightarrow R= \sqrt{25,32} \approx 5,03\).

Vậy \(R≈ 5,03 (cm)\)

 loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan