Bài 80 trang 61 SBT toán 8 tập 2


Giải bài 80 trang 61 sách bài tập toán 8. Cho a > 0 và b > 0, chứng tỏ rằng (a + b) (1/a + a/b) ≥ 4.

Đề bài

Cho \(a > 0\) và \(b > 0\), chứng tỏ rằng 

\(\displaystyle\left( {a + b} \right)\left( {{1 \over a} + {1 \over b}} \right) \ge 4\)

Phương pháp giải - Xem chi tiết

- Áp dụng tính chất : \(A^2 \ge 0\) với mọi \(A.\)

- Áp dụng tính chất liên hệ giữa thứ tự và phép cộng : Khi cộng cùng một số vào hai vế của một bất đẳng thức ta được một bất đẳng thức mới cùng chiều với bất đẳng thức đã cho.

- Áp dụng các tính chất liên hệ giữa thứ tự và phép nhân với số dương và số âm.

+ Khi nhân cả hai vế của một bất đẳng thức với cùng một số dương ta được một bất đẳng thức mới cùng chiều với bất đẳng thức đã cho.

+ Khi nhân cả hai vế của một bất đẳng thức với cùng một số âm ta được bất đẳng thức mới ngược chiều với bất đẳng thức đã cho.

Lời giải chi tiết

Ta có:

\(\displaystyle\eqalign{  & {\left( {a - b} \right)^2} \ge 0  \cr  &  \Leftrightarrow {a^2} + {b^2} - 2ab \ge 0  \cr  &  \Leftrightarrow {a^2} + {b^2} - 2ab + 2ab \ge 2ab  \cr  &  \Leftrightarrow {a^2} + {b^2} \ge 2ab \cr} \)

Vì \(a > 0, b > 0\) nên  \(ab > 0 \displaystyle \Rightarrow {1 \over {ab}} > 0\)

\(\displaystyle\eqalign{  &\Rightarrow \left( {{a^2} + {b^2}} \right).{1 \over {ab}} \ge 2ab.{1 \over {ab}}  \cr  &  \Leftrightarrow {a \over b} + {b \over a} \ge 2  \cr  &  \Leftrightarrow 2 + {a \over b} + {b \over a} \ge 2 + 2  \cr  &  \Leftrightarrow 2 + {a \over b} + {b \over a} \ge 4  \cr  &  \Leftrightarrow 1 + 1 + {a \over b} + {b \over a} \ge 4  \cr  & \Leftrightarrow {a \over a} + {a \over b} + {b \over b} + {b \over a} \ge 4\cr&  \Leftrightarrow a\left( {{1 \over a} + {1 \over b}} \right) + b\left( {{1 \over a} + {1 \over b}} \right) \ge 4  \cr  &  \Leftrightarrow \left( {a + b} \right)\left( {{1 \over a} + {1 \over b}} \right) \ge 4 \cr} \)

Loigiaihay.com


Bình chọn:
4.6 trên 9 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí