 Giải SBT đại số, hình học toán lớp 9 tập 1, tập 2
                                                
                            Giải SBT đại số, hình học toán lớp 9 tập 1, tập 2
                         Bài 4. Một số hệ thức về cạnh và góc trong tam giác vuông
                                                        Bài 4. Một số hệ thức về cạnh và góc trong tam giác vuông
                                                    Bài 65 trang 115 SBT toán 9 Tập 1>
Giải bài 65 trang 115 sách bài tập toán 9. Tính diện tích hình thang cân, biết hai cạnh đáy là 12cm và 18cm, góc ở đáy bằng 75 độ.
Đề bài
Tính diện tích hình thang cân, biết hai cạnh đáy là \(12\,cm\) và \(18\,cm,\) góc ở đáy bằng \(75\)\(^\circ \)
Phương pháp giải - Xem chi tiết
Áp dụng công thức tính diện tích hình thang: \(S=\dfrac{a+b}{2}.h\)
Áp dụng các hệ thức về cạnh và góc trong tam giác vuông, tam giác \(ABC\) vuông tại \(A\) có \(AB=c,\,AC=b,\, BC=a\) thì:
\(b=a.sin\,B=a.cos\,C\)
\(b=c.tan\,B=c.cot\,C\)
\(c=a.sin\,C=a.cos\,B\)
\(c=b.tan\,C=b.cot\,B\)
Lời giải chi tiết

Giả sử hình thang cân \(ABCD\) có \(AB = 12\,cm,\, CD = 18\,cm,\) \(\widehat D = 75^\circ \)
Kẻ \(AH \bot CD,BK \bot CD\) suy ra \(AH//BK\)
Lại có \(AB//HK\) nên ABKH là hình bình hành.
Suy ra: \(AB = HK = 12\, (cm)\)
Vì \(ABCD\) là hình thang cân nên \(\widehat D = \widehat C,AD=BC\)
Nên \(\Delta ADH = \Delta BCK\) (cạnh huyền, góc nhọn)
Suy ra: \(DH = CK\) (2 cạnh tương ứng)
Suy ra:
\(CK=DH = \dfrac{CD - HK} {2} = \dfrac{18 - 12}{2} \) \(= 3\,(cm)\)
Trong tam giác vuông \(ADH,\) ta có:
\(AH = DH.tgD = 3.tg75^\circ \) \(\approx 11,196\,(cm)\)
Vậy:
\(\eqalign{
& {S_{ABCD}} = {{AB + CD} \over 2}.AH \cr 
& \approx {{12 + 18} \over 2}.11,196 = 167,94 cm^2.\cr} \) 
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ 
                 
                 
                                     
                                     
        
 
                                            




 
             
            