Bài 4.8 phần bài tâp bổ sung trang 117 SBT toán 9 Tập 1


Giải bài 4.8 phần bài tâp bổ sung trang 117 sách bài tập toán 9. Cho tam giác nhọn MNP. Gọi D là chân đường cao của tam giác đó kẻ từ M. Chứng minh rằng:...

Đề bài

Cho tam giác nhọn \(MNP.\) Gọi \(D\) là chân đường cao của tam giác đó kẻ từ \(M.\) Chứng minh rằng:

a) \({S_{MNP}} = \dfrac{1}{2}MP.NP.\sin P;\)

b) \(DP = \dfrac{MN.sinN}{tan P};\)

c) \(∆DNE\) \(\backsim\) \(∆MNP,\) trong đó \(E\) là chân đường cao của tam giác \(MNP\) kẻ từ \(P.\)

Phương pháp giải - Xem chi tiết

Áp dụng các hệ thức về cạnh và góc trong tam giác vuông, tam giác \(ABC\) vuông tại \(A\) có \(AB=c,\,AC=b,\, BC=a\) thì:   

\(b=a.sin\,B=a.cos\,C\)

\(b=c.tan\,B=c.cot\,C\)

\(c=a.sin\,C=a.cos\,B\)

\(c=b.tan\,C=b.cot\,B\)

Xét các trường hợp hai tam giác đồng dạng.

Lời giải chi tiết

a) Xét tam giác MDP vuông tại D, ta có: \(MD = MP.sin\, P,\) suy ra: 

\({S_{MNP}} = \dfrac{1}{2}NP.MD \) \(= \dfrac{1}{2}NP.MP\sin P.\)

b) Xét tam giác MDN vuông tại D, ta có: \(MD = MN.sin \,N\)

Xét tam giác MDP vuông tại D, ta có: \(MD = DP.tan \,P\)

Suy ra \(DP=\dfrac{{MD}}{{\tan P}}=\dfrac{MN.sin N}{tan P}\)

c) Xét \(\Delta DMN\) và \(\Delta EPN\) có:

\(\widehat D = \widehat E\,( = 9{0^0})\)

\(\widehat N\) chung

Vậy \(\Delta DMN\) \(\backsim\) \(\Delta EPN\) (g-g)

\( \Rightarrow \dfrac{{DN}}{{MN}} = \dfrac{{EN}}{{PN}}\)

Xét \(\Delta DNE\) và \(\Delta MNP\) có:

\(\widehat N\) chung

\(\dfrac{{DN}}{{MN}} = \dfrac{{EN}}{{PN}}\)

Vậy \(\Delta DNE\) \(\backsim\) \(\Delta MNP\) (c-g-c).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.1 trên 10 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài