Bài 64 trang 58 SBT toán 8 tập 2


Giải bài 64 trang 58 sách bài tập toán 8. Tìm các số tự nhiện n thỏa mãn mỗi bất phương trình sau:

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

Tìm các số tự nhiện \(n\) thỏa mãn mỗi bất phương trình sau:

LG a

\(3\left( {5 - 4n} \right) + \left( {27 + 2n} \right) > 0\)

Phương pháp giải:

- Áp dụng qui tắc chuyển vế và quy tắc nhân để giải các bất phương trình đã cho.

- Dựa vào nghiệm vừa tìm được để tìm các số tự nhiên thỏa mãn bất phương trình đã cho.

Lời giải chi tiết:

Ta có :

\(\eqalign{  & 3\left( {5 - 4n} \right) + \left( {27 + 2n} \right) > 0  \cr  &  \Leftrightarrow 15 - 12n + 27 + 2n > 0  \cr &  \Leftrightarrow  - 10n + 42>0 \cr &  \Leftrightarrow  - 10n >  - 42 \cr  &  \Leftrightarrow -10n.\left( \dfrac{-1}{10} \right) < 4,2.\left( \dfrac{-1}{10} \right) \cr  &  \Leftrightarrow n < 4,2 \cr} \) 

Vậy các số tự nhiên thỏa mãn bất phương trình là \(0; 1; 2; 3; 4.\)

LG b

\({\left( {n + 2} \right)^2} - \left( {n - 3} \right)\left( {n + 3} \right) \le 40\)

Phương pháp giải:

- Áp dụng qui tắc chuyển vế và quy tắc nhân để giải các bất phương trình đã cho.

- Dựa vào nghiệm vừa tìm được để tìm các số tự nhiên thỏa mãn bất phương trình đã cho.

Lời giải chi tiết:

Ta có :

\(\eqalign{  & {\left( {n + 2} \right)^2} - \left( {n - 3} \right)\left( {n + 3} \right) \le 40  \cr  &  \Leftrightarrow {n^2} + 4n + 4 - {n^2} + 9 \le 40  \cr  &  \Leftrightarrow 4n \le 40 - 4-9  \cr  &  \Leftrightarrow 4n \le 27\cr  &  \Leftrightarrow n \le {{27} \over 4} \cr} \)

Vậy các số tự nhiên thỏa mãn bất phương trình là \(0; 1; 2; 3; 4; 5; 6.\)

Loigiaihay.com


Bình chọn:
4 trên 5 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

Tham Gia Group Dành Cho Lớp 8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí