Bài 41 trang 56 SBT toán 8 tập 2


Giải bài 41 trang 56 sách bài tập toán 8. Áp dụng quy tắc chuyển vế, giải các bất phương trình sau: a) 3x < 2x + 5 ; b) 2x + 1 < x + 4.

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

Áp dụng quy tắc chuyển vế, giải các bất phương trình sau:

LG a

\(3x < 2x + 5\)

Phương pháp giải:

Áp dụng qui tắc chuyển vế: Khi chuyển một hạng tử của bất phương trình từ vế này sang vế kia ta đổi dấu hạng tử đó.

Giải chi tiết:

Ta có :

\(3x < 2x + 5 \Leftrightarrow 3x - 2x < 5 \Leftrightarrow x < 5\)

 Vậy tập nghiệm của bất phương trình là: \(S=\left\{ {x|x < 5} \right\}.\)

LG b

\(2x + 1 < x + 4\)

Phương pháp giải:

Áp dụng qui tắc chuyển vế: Khi chuyển một hạng tử của bất phương trình từ vế này sang vế kia ta đổi dấu hạng tử đó.

Giải chi tiết:

Ta có :

\(2x + 1 < x + 4 \)

\(\Leftrightarrow 2x - x < 4 - 1 \Leftrightarrow x < 3\)

 Vậy tập nghiệm của bất phương trình là: \(S=\left\{ {x|x < 3} \right\}.\)

LG c

\( - 2x >  - 3x + 3\)

Phương pháp giải:

Áp dụng qui tắc chuyển vế: Khi chuyển một hạng tử của bất phương trình từ vế này sang vế kia ta đổi dấu hạng tử đó.

Giải chi tiết:

Ta có :

\( - 2x >  - 3x + 3\)

\(\Leftrightarrow  - 2x + 3x > 3 \Leftrightarrow x > 3\)

 Vậy tập nghiệm của bất phương trình là: \(S=\left\{ {x|x > 3} \right\}.\)

LG d

\( - 4x - 2 >  - 5x + 6\)

Phương pháp giải:

Áp dụng qui tắc chuyển vế: Khi chuyển một hạng tử của bất phương trình từ vế này sang vế kia ta đổi dấu hạng tử đó.

Giải chi tiết:

Ta có :

\( - 4x - 2 >  - 5x + 6 \)

\(\Leftrightarrow  - 4x + 5x > 6 + 2 \Leftrightarrow x > 8\)

 Vậy tập nghiệm của bất phương trình là: \(S=\left\{ {x|x > 8} \right\}.\)

Loigiaihay.com


Bình chọn:
4.1 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

Tham Gia Group Dành Cho Lớp 8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí