Bài 4.1 phần bài tập bổ sung trang 158 SBT toán 8 tập 2


Bài 4.1 phần bài tập bổ sung trang 158 SBT toán 8 tập 2. Quan sát hình lăng trụ đứng tam giác ở hình bs.15 rồi điền số thích hợp vào các ô trống trong bảng sau:

Đề bài

Quan sát hình lăng trụ đứng tam giác ở hình bs.15 rồi điền số thích hợp vào các ô trống trong bảng sau:

Phương pháp giải - Xem chi tiết

Sử dụng:

- Diện tích xung quanh của hình lăng trụ đứng bằng tổng diện tích các mặt bên hoặc bằng chu vi đáy nhân với chiều cao.

\({S_{xq}} = 2p.h\)

Trong đó: \(p\) là nửa chu vi đáy, \(h\) là chiều cao.

- Diện tích toàn phần của hình lăng trụ bằng tổng diện tích xung quanh và diện tích hai đáy.

- Thể tích hình lăng trụ đứng bằng diện tích đáy nhân với chiều cao

\(V = S. h\)

Trong đó: \(S\) là diện tích đáy; \(h\) là chiều cao lăng trụ.

- Định lí Pytago trong tam giác vuông: Bình phương của cạnh huyền bằng tổng các bình phương của các cạnh góc vuông.

Lời giải chi tiết

Ta điền vào bảng như sau:

Giải thích:

Áp dụng định lí Pytago vào tam giác vuông đáy ta có: \({c^2} = {a^2} + {b^2}\)

- Với \(a=9;b=40;h=8\) ta có:

\(c = \sqrt {{9^2} + {{40}^2}}  = 41\)

\({S_đ} = \dfrac{1}{2}.9.40 = 180\)

\({S_{xq}} = \left( {9 + 40 + 41} \right).8 = 720\)

\({S_{tp}} = 720 + 2.180 = 1080\)

\(V = 180.8 = 1440\)

- Với \(b=12;c=37;S_{xq}=1512\) ta có:

\(a = \sqrt {{{37}^2} - {{12}^2}}  = 35\)

Ta có: \({S_{xq}} = \left( {35 + 12 + 37} \right).h = 1512\)

\(\Rightarrow h = 1512:84 = 18\)

\({S_đ} = \dfrac{1}{2}.35.12 = 210\)

\({S_{tp}} = 1512 + 2.210 = 1932\)

\(V = 210.18 = 3780\)

- Với \(a=20;S_đ=210;V=3570\) ta có:

\({S_đ} = \dfrac{1}{2}ab \Rightarrow b = \dfrac{{2{S_đ}}}{a} = \dfrac{{2.210}}{{20}} = 21\)

\(c = \sqrt {{{20}^2} + {{21}^2}}  = 29\)

\(V = {S_đ}.h \Rightarrow h = \dfrac{V}{{{S_đ}}} = \dfrac{{3570}}{{210}} = 17\)

\({S_{xq}} = \left( {20 + 21 + 29} \right).17 = 1190\)

\({S_{tp}} = 1190 + 2.210 = 1610\)

- Với \(a=63;c=65;S_{tp}=4464\) ta có:

\(b = \sqrt {{{65}^2} - {{63}^2}}  = 16\)

\({S_đ} = \dfrac{1}{2}ab = \dfrac{1}{2}.63.16 = 504\)

\({S_{tp}} = {S_{xq}} + 2{S_đ}\)

\(\Rightarrow {S_{xq}} = {S_{tp}} - 2{S_đ} \)\(\,= 4464 - 2.504 = 3456\)

Ta có: \({S_{xq}} = \left( {a + b + c} \right).h\)

\(\Rightarrow h = \dfrac{{{S_{xq}}}}{{a + b + c}} \)\(\,= \dfrac{{3456}}{{63 + 16 + 65}} = 24\)

\(V=504.24 = 12096\)

- Với \(b=45;h=13;V=8190\) ta có:

\(V = {S_đ}.h \) \(\Rightarrow {S_đ} = V:h = 8190:13 = 630\)

\({S_đ} = \dfrac{1}{2}ab \) \(\Rightarrow a = \dfrac{{2{S_đ}}}{b} = \dfrac{{2.630}}{{45}} = 28\)

\(c = \sqrt {{{28}^2} + {{45}^2}}  = 53\)

\({S_{xq}} = \left( {28 + 45 + 53} \right).13 = 1638\)

\({S_{tp}} = 1638 + 2.630 = 2898\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10 năm học 2021-2022, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài