Bài 3.2 phần bài tập bổ sung trang 84 SBT toán 8 tập 1


Đề bài

Hình thang cân \(ABCD\) \((AB// CD)\) có hai đường chéo cắt nhau tại \(I,\) hai đường thẳng chứa các cạnh bên cắt nhau ở \(K.\) Chứng minh rằng \(KI\) là đường trung trực của hai đáy.

Phương pháp giải - Xem chi tiết

Ta sử dụng kiến thức:

+) Trong hình thang cân, hai cạnh bên bằng nhau.

+) Trong hình thang cân, hai đường chéo bằng nhau.

+) Trong tam giác cân, đường trung trực ứng với cạnh đáy đi qua đỉnh của tam giác đó.

Lời giải chi tiết

Vì ABCD là hình thang cân nên: 

\(\eqalign{
& \widehat {ADC} = \widehat {BCD}\cr 
& \Rightarrow \widehat {KDC} = \widehat {KCD} \cr} \) 

\(⇒ ∆ KCD\) cân tại \(K\)

\(⇒ KD = KC\) (tính chất)

\(⇒ KA + AD = KB + BC\)

Mà \(AD = BC\) (tính chất hình thang cân)

\(⇒ KA = KB\)

Xét \(∆ ADC\) và \(∆ BCD \) có:

\(AD = BC\) (chứng minh trên)

\(AC = BD\) (tính chất hình thang cân)

\(CD\) cạnh chung

Do đó: \(∆ ADC = ∆ BCD\;\;\; (c.c.c)\)

\( \Rightarrow {\widehat D_1} = {\widehat C_1}\)

\(⇒ ∆ IDC\) cân tại \(I\)

\(⇒ IC = ID\) nên \(I\) thuộc đường trung trực của \(CD\)

\(KC = KD\) nên \(K\) thuộc đường trung trực của \(CD\)

\(K≢ I.\) Vậy \(KI\) là đường trung trực của \(CD.\)

Lại có: \(BD = AC\) (tính chất hình thang cân)

\(⇒ IB + ID = IA + IC\) mà \(ID = IC\)  (chứng minh trên)

\(⇒ IB = IA\) nên \(I\) thuộc đường trung trực \(AB\)

\( KA = KB\) ( chứng minh trên) nên \(K\) thuộc đường trung trực \(AB\)

\(K≢ I.\) Vậy \(KI\) là đường trung trực của \(AB.\)

Loigiaihay.com


Bình chọn:
4.3 trên 13 phiếu
  • Bài 3.3 phần bài tập bổ sung trang 84 SBT toán 8 tập 1

    Giải bài 3.3 phần bài tập bổ sung trang 84 sách bài tập toán 8. Hình thang cân ABCD (AB//CD) có góc C bằng 60 độ , DB là tia phân giác của góc D. Tính các cạnh của hình thang, biết chu vi hình thang bằng 20cm.

  • Bài 3.1 phần bài tập bổ sung trang 83 SBT toán 8 tập 1

    Giải bài 3.1 phần bài tập bổ sung trang 83 sách bài tập toán 8. Hình thang cân ABCD (AB // CD) có góc A bằng 70 độ.Khẳng định nào dưới đây là đúng ?...

  • Bài 33 trang 83 SBT toán 8 tập 1

    Giải bài 33 trang 8 sách bài tập toán 8. Hình thang cân ABCD có đường chéo DB vuông góc với cạnh bên BC, BD là tia phân giác của góc D. Tính chu vi của hình thang, biết BC = 3cm.

  • Bài 32 trang 83 SBT toán 8 tập 1

    Giải bài 32 trang 83 sách bài tập toán 8. a.Hình thang cân ABCD có đáy nhỏ AB = b, đáy lớn CD = a, đường cao AH...

  • Bài 31 trang 83 SBT toán 8 tập 1

    Giải bài 31 trang 83 sách bài tập toán 8. Hình thang cân ABCD có O là giao điểm của hai đường thẳng chứa cạnh bên AD, BC và E là giao điểm của hai đường chéo. Chứng minh rằng OE là đường trung trực của hai đáy.

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

>> Học trực tuyến lớp 9 và luyện vào lớp 10 tại Tuyensinh247.com. , cam kết giúp học sinh lớp 9 học tốt, hoàn trả học phí nếu học không hiệu quả.