Bài 156 trang 25 SBT toán 6 tập 1


Giải bài 156 trang 25 sách bài tập toán 6. Cho biết: Nếu số tự nhiên a (lớn hơn 1) không chia hết cho mọi số nguyên tố p mà bình phương không vượt quá a thì a là số nguyên tố. Dùng nhận xét trên cho biết số nào trong các số a ở bài 153 là số nguyên tố?

Đề bài

Cho biết: Nếu số tự nhiên \(a\) (lớn hơn \(1\)) không chia hết cho mọi số nguyên tố \(p\) mà bình phương không vượt quá \(a\) (tức là \({p^2} \le a\)) thì \(a\) là số nguyên tố. Dùng nhận xét trên cho biết số nào trong các số \(a\) ở bài \(153\) là số nguyên tố.

Phương pháp giải - Xem chi tiết

+) Sử dụng nhận xét đã cho để làm.

+) Ta chia số \(a\) đó lần lượt cho các số nguyên tố \(p\) mà \(p^2 \le a\).

Lời giải chi tiết

\(*\) Ta có: \(59\,\not {\vdots}\,2;\)  \(59\,\not {\vdots\,3;}\)  \(59\,\not {\vdots}\,5;\)  \(59\,\not  {\vdots}\,7\)

Mà \({7^2} = 49 < 59;{11^2} = 121 > 59\)

Vậy \(59\) là số nguyên tố.

\(*\) Ta có:  \(121\)  \(\not {\vdots} \) \(2 ;\;121\)  \(\not {\vdots} \) \(3 ;\;121\)  \(\not {\vdots}\;5 ;\) \(121  \not {\vdots}\; 7; \) \(121 \; ⋮\;  11\) 

Vậy \(121\) là hợp số 

\(*\) Ta có:  \(179\, \not {\vdots}\; 2; \) \(179\,\not {\vdots}\; 3; \) \(179\, \not{\vdots}\; 5 \) \(179\, \not  {\vdots}\;7; \) \(179\, \not{\vdots}\; 11; \) \(179\, \not {\vdots}\; 13. \) 

Mà \({13^2} = 169 < 179;{17^2} = 289 > 179\)

Vậy \(179\) là số nguyên tố.

* Ta có: \(197\, \not{\vdots}\,\;2; \) \(197\, \not{\vdots}\;3; \) \(197\, \not{\vdots}\;5; \) \(197\, \not{\vdots}\;7; \) \(197\, \not{\vdots}\,\,11; \) \(197\, \not{\vdots}\,\,13. \)

Mà \({13^2} = 169 < 197;{17^2} = 289 > 197\)

Vậy \(197\) là số nguyên tố.

\(*\) Ta có:   \(217\, \not {\vdots}\; 2; \) \(217\, \not {\vdots}\; 3; \) \(217\, \not {\vdots}\; 5; \) \(217\, {\vdots}\; 7; \) \(217\, \not {\vdots}\; 11; \) \(217\, \not {\vdots}\; 13. \)

Vậy \(217\) là hợp số.

Loigiaihay.com


Bình chọn:
4 trên 10 phiếu

>> Xem thêm

Tham Gia Group Dành Cho 2K13 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí