Bài 122 trang 95 SBT toán 8 tập 1


Giải bài 122 trang 95 sách bài tập toán 8. Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E theo thứ tự là chân các đường vuông góc kẻ từ H đến AB, AC.

Đề bài

Cho tam giác \(ABC\) vuông tại \(A,\) đường cao \(AH.\) Gọi \(D,\, E\) theo thứ tự là chân các đường vuông góc kẻ từ \(H\) đến \(AB,\, AC.\)

a. Chứng minh rằng \(AH = DE.\)

b. Gọi \(I\) là trung điểm của \(HB,\, K\) là trung điểm của \(HC.\) Chứng minh rằng \(DI // EK\)

Phương pháp giải - Xem chi tiết

Hình tứ giác có ba góc vuông là hình chữ nhật

Hình chữ nhật có hai đường chéo bằng nhau.

Tính chất đường trung tuyến ứng với cạnh huyền trong tam giác vuông: Trong tam giác vuông đường trung tuyến ứng với cạnh huyền bằng nửa cạnh ấy

Lời giải chi tiết

 

a. Xét tứ giác \(ADHE:\)

\(\widehat A = {90^0}\) (gt)

\(\widehat {ADH} = {90^0}\) (vì \(HD ⊥ AB\))

\(\widehat {AEH} = {90^0}\) (vì \(HE ⊥ AC\))

Suy ra tứ giác \(ADHE\) là hình chữ nhật (vì có ba góc vuông)

\(⇒ AH = DE\) (tính chất hình chữ nhật)

b. \(∆ BHD\) vuông tại \(D\) có \(DI\) là đường trung tuyến ứng với cạnh huyền \(BH\)

\(⇒ DI = IB\) \(= \dfrac{1}{2} BH\) (tính chất tam giác vuông)

\(⇒ ∆ IDB\) cân tại \(I\) \( \Rightarrow \widehat {DIB} = {{{180}^0} - 2\widehat B} \) (1)

\(∆ HEC\) vuông tại \(E\) có \(EK\) là đường trung tuyến ứng với cạnh huyền \(HC\)

\(⇒ EK = KH = \dfrac{1}{2}HC\) (tính chất tam giác vuông)

\(⇒ ∆ KHE\) cân tại \(K\) \( \Rightarrow \widehat {EKH} = {{{180}^0} - 2\widehat {KHE}}\) (2)

Tứ giác \(ADHE\) là hình chữ nhật

\(⇒ HE // AD\) hay \(HE // AB\)

\( ⇒\) \(\widehat B = \widehat {KHE}\) (hai góc đồng vị) (3)

Từ (1), (2) và (3) suy ra: \(\widehat {DIB} = \widehat {EKH}\)

Mà 2 góc này ở vị trí đồng vị

\(⇒ DI // EK\)

Loigiaihay.com


Bình chọn:
4 trên 12 phiếu
  • Bài 123 trang 95 SBT toán 8 tập 1

    Giải bài 123 trang 95 sách bài tập toán 8. Cho tam giác ABC vuông tại A, đường cao AH, đường trung tuyến AM...

  • Bài 9.1 phần bài tập bổ sung trang 95 SBT toán 8 tập 1

    Giải bài 9.1 phần bài tập bổ sung trang 95 sách bài tập toán 8. Một hình chữ nhật có hai cạnh kề bằng 4cm và 6cm. Độ dài đường chéo của hình chữ nhật đó bằng bao nhiêu xentimét ?

  • Bài 9.2 phần bài tập bổ sung trang 95 SBT toán 8 tập 1

    Giải bài 9.2 phần bài tập bổ sung trang 95 sách bài tập toán 8. Cho tam giác ABC vuông tại A, đường cao AH. Gọi I, K theo thứ tự là trung điểm của AB, AC. Tính số đo góc IHK.

  • Bài 9.3 phần bài tập bổ sung trang 95 SBT toán 8 tập 1

    Giải bài 9.3 phần bài tập bổ sung trang 95 sách bài tập toán 8. Cho hình thang cân ABCD, đường cao AH. Gọi E, F theo thứ tự là trung điểm của các cạnh bên AD, BC. Chứng minh rằng EFCH là hình bình hành.

  • Bài 121 trang 95 SBT toán 8 tập 1

    Giải bài 121 trang 95 sách bài tập toán 8. Cho tam giác nhọn ABC, các đường cao BD, CE. Gọi H, K theo thứ tự là chân các đường vuông góc kẻ từ B, C đến đường thẳng DE. Chứng minh rằng EH = DH

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí