Đề kiểm tra 45 phút (1 tiết) - Đề số 9 - Chương 2 - Hình học 9

Bình chọn:
4 trên 6 phiếu

Giải Đề kiểm tra 45 phút (1 tiết) - Đề số 9 - Chương 2 - Hình học 9

Đề bài

Cho đường tròn (O; R) đường kính AB. Gọi S là trung điểm của OA. Vẽ đường tròn tâm S đi qua A.

a. Chứng minh (O) và (S) tiếp xúc tại A.

b. Một đường thẳng đi qua A cắt (S) tại M và cắt (O) tại N (M, N khác A). Chứng minh : SM // ON

c. Chứng minh : OM // BN

d. Gọi I là trung điểm của ON, đường thẳng AI cắt BN tại K. Chứng minh: \(BK = 2NK\).

Lời giải chi tiết

a. Ta có: \(OS = OA – SA (d = R – R’)\)

Vậy (O) và (S) tiếp xúc trong tại A.

b. ∆ASM cân (\(SA = SM = R’\))

\( \Rightarrow {\widehat M_1} = \widehat {MAS}\)

Tương tự ∆AON cân

\(\eqalign{  &  \Rightarrow {\widehat N_1} = \widehat {MAS}  \cr  &  \Rightarrow {\widehat M_1} = {\widehat N_1} \cr} \)

Do đó SM // ON (đồng vị ).

c. Dễ thấy \(\widehat {AMO} = \widehat {ANB} = 90^\circ \) (góc chắn nửa đường tròn)

\(⇒ OM // BN (⊥ AN)\)

d. Kẻ OE // IK, ta có IK là đường trung bình của ∆ONE \(⇒ K\) là trung điểm của NE hay \(KN = KE.\)

Mặt khác trong ∆AKB ta có: OE là đường trung bình nên E là trung điểm của KB hay \(EK = EB\). Vậy \(BK = 2NK.\)

Cách khác : Gọi H là giao điểm của MO và AK, ta có: \(∆OIH = ∆NIK\) (g.c.g)

\(⇒ NK = OH\). Có O là trung điểm của AB, OH // BN (cmt)

\(⇒\) OH là đường trung bình của ∆AKB

\( \Rightarrow OH = {1 \over 2}KB\) hay \(2OH = BK\), mà \(OH = NK ⇒ 2NK = BK.\)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com