Đề kiểm tra 45 phút (1 tiết) - Đề số 4 - Chương 2 - Hình học 9


Giải Đề kiểm tra 45 phút (1 tiết) - Đề số 4 - Chương 2 - Hình học 9

Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Cho hai đường tròn (O; R) và (O’; R’) tiếp xúc ngoài tại A. Một tiếp tuyến chung ngoài BC của (O) và (O’) (\(B ∈ (O), C ∈ (O’)\)).

a. Chứng minh rằng đường tròn đường kính BC tiếp xúc với đường thẳng OO’ và đường tròn đường kính OO’ tiếp xúc với đường thẳng BC.

b. Tính BC theo R và R’

c. Đường tròn (H; r) tiếp xúc với cả hai đường tròn (O), (O’) và tiếp xúc với BC tại M. Tính bán kính r theo R và R’.

LG ý a

Phương pháp giải:

Sử dụng:

-Tính chất hai tiếp tuyến cắt nhau

-Đường trung bình của hình thang

- Đường thẳng đi qua một điểm của đường tròn và vuông góc với bán kính là tiếp tuyến của đường tròn đó

Lời giải chi tiết:

a. Gọi I là giao điểm của tiếp tuyến tại A và tiếp tuyến chung BC, ta có \(IA = IB = IC\) (tính chất tiếp tuyến cắt nhau).

Ta có: O, A, O’ thẳng hàng nên \(IA ⊥ OO’\)

Chứng tỏ đường tròn tâm I đường kính BC tiếp xúc với đường thẳng OO’.

Gọi K là trung điểm của OO’ \(⇒\) IK là đường trung bình của hình thang BOO’C \(⇒\) IK // OB // O’C hay \(IK ⊥ BC.\)

Mặt khác : \(IK = {{OB + O'C} \over 2} = {{R + R'} \over 2} = {{OO'} \over 2}\)\( \Rightarrow IK = OK = O'K\)

Suy ra BC là tiếp tuyến của đường tròn tâm K đường kính OO'

Do đó đường tròn tâm K đường kính OO’, tiếp xúc với BC tại I.

LG ý b

Phương pháp giải:

Sử dụng:

-Hai tia phân giác của hai góc kề bù tạo thành 1 góc vuông

-Hệ thức về cạnh và đường cao trong tam giác vuông

Lời giải chi tiết:

b. Ta có: OI, O’I theo thứ tự là phân giác của các góc BIA và CIA nên \(OI ⊥ O’I\) hay ∆OIO’ vuông tại I có đường cao IA.

\(I{A^2} = OA.O'A = R.R'\) (định lí 2) hay \(IA = \sqrt {R.R'}  \Rightarrow BC = 2\sqrt {R.R'} \)

LG ý c

Phương pháp giải:

Sử dụng kết quả của ý b

Lời giải chi tiết:

c. Ta có: BM là tiếp tuyến chung ngoài của (O) và (H) nên:

\(BM = 2\sqrt {R.r} \) (chứng minh như câu b)

Tương tự ta có : \(CM = 2\sqrt {R'.r} ,\) mà \(BC = BM + MC\)

\(\eqalign{  &  \Rightarrow 2\sqrt {R.R'}  = 2\sqrt {R.r}  + 2\sqrt {R'.r} \cr& \Rightarrow \sqrt {R.R'}  = \sqrt r \left( {\sqrt R  + \sqrt {R'} } \right)  \cr  &  \Rightarrow \sqrt r  = {{\sqrt {R.R'} } \over {\sqrt R  + \sqrt {R'} }} \cr&\Rightarrow r = {{R.R'} \over {R + R' + 2\sqrt {R.R'} }} \cr} \)

Loigiaihay.com

 

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài