Đề kiểm tra 45 phút (1 tiết) - Đề số 3 - Chương 2 - Hình học 9


Giải Đề kiểm tra 45 phút (1 tiết) - Đề số 3 - Chương 2 - Hình học 9

Đề bài

Bài 1. Cho đường tròn đường kính AB. Kẻ dây CD vuông góc với AB tại điểm I bất kì trên AB. Nối I với trung điểm M của AD. Chứng minh MI vuông góc với BC.

Bài 2. Cho đường tròn (O) đường kính AB. Điểm C nằm giữa A và O. Vẽ đường tròn (O’) có đường kính là CB.

a. Hai đường tròn (O) và (O’) có vị trí tương đối như thế nào ?

b. Kẻ dây DE vuông góc với AC tại trung điểm H của AC. Chứng minh rằng tứ giác ADCE là hình thoi.

c. Gọi K là giao điểm của BD với đường tròn (O’). Chứng minh rằng ba điểm E, C, K thẳng hàng.

d. Chứng minh rằng HK là tiếp tuyến của đường tròn (O’)

Lời giải chi tiết

Bài 1.

Ta có: \(CD ⊥ AB\) tại I \(⇒ IC = ID\) (định lí đường kính dây cung).

Lại có M là trung điểm của AD (gt) nên IM là đường trung bình của ∆ACD

\(⇒ IM // AC\) (1)

Mà \(\widehat {ACB} = 90^\circ \) (AB là đường kính)

hay \(AC ⊥ BC\) (2)

Từ (1) và (2) ta có: \(MI ⊥ BC\)

Bài 2.

a.  Ta có: \(OO’ = OB – O’B\) (\(d = R – R’\)) \(⇒ (O)\) và \((O’)\) tiếp xúc trong tại B.

b. Ta có: \(DE ⊥ AC\) tại trung điểm H

\(⇒ HD = HE\) (định lí đường kính dây cung)

Do đó tứ giác ADCE là hình thoi.

c. Ta có: \(\widehat {ADB} = 90^\circ \) (AB là đường kính)

hay \(AD ⊥ BD\), mà EC // AD

\(⇒ EC ⊥ BD\) (1)

Lại có \(\widehat {CKB} = 90^\circ \) (CB là đường kính)

hay \(CK ⊥ BD\) (2)

Từ (1) và (2) \(⇒ EC\) và \(KC\) phải trùng nhau.

Vậy ba điểm E, C, K thẳng hàng.

d. Ta có: \(∆BO’K\) cân tại O’ (\(O’B = O’K = R’\)) \( \Rightarrow {\widehat B_1} = {\widehat K_1}\,\left( 3 \right)\)

\(∆EKD\) vuông có HK là đường trung tuyến nên \(HK = HE = {1 \over 2}ED\)

\(⇒ ∆EHK\) cân \( \Rightarrow {\widehat E_1} = {\widehat K_3}\,\left( 4 \right),\,ma\,{\widehat E_1} = {\widehat B_1}\,\left( 5 \right)\) (cùng phụ với \(\widehat {EDB}\) )

Từ (3), (4) và (5) \( \Rightarrow {\widehat K_1} = {\widehat K_3},\) mà \({\widehat K_2} + {\widehat K_1} = 90^\circ  \Rightarrow {\widehat K_3} + {\widehat K_2} = 90^\circ \)

hay \(HK ⊥ O’K\). Chứng tỏ HK là tiếp tuyến của (O’)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài