Bài 9 trang 176 Tài liệu dạy – học Toán 7 tập 1

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC tại H. Tia phân giác của góc HAC cắt

Đề bài

Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC tại H. Tia phân giác của góc HAC cắt BC tại D. Lấy \(K \in AB\) sao cho BK = BH. Chứng minh rằng : KH // AD.

Lời giải chi tiết

 

Ta có: BK = BH (giả thiết) => tam giác BHK cân tại B \(\Rightarrow \widehat {BKH} = \widehat {BHK}\)

Mà \(\widehat {KBH} + \widehat {BHK} + \widehat {BKH} = {180^0}\)   (tổng ba góc trong một tam giác)

Nên \(\eqalign{  & \widehat {BHK} + \widehat {BHK} + \widehat {KBH} = {180^0}  \cr  &  \Rightarrow 2\widehat {BHK} + \widehat {KBH} = {180^0} \Rightarrow \widehat {BHK} = {{{{180}^0} - \widehat {KBH}} \over 2}(1) \cr} \)

Mặt khác \(\widehat {BAD} + \widehat {DAC} = \widehat {BAC} = {90^0} \Rightarrow \widehat {BAD} = {90^0} - \widehat {DAC}.\)

Và \(\widehat {BDA} + \widehat {HAD} = {90^0}(\Delta HAD\)  vuông tại H) \(\Rightarrow \widehat {BAD} = {90^0} - \widehat {HAD}\)

Mà \(\widehat {DAC} = \widehat {HAD}\)   (AD là tia phân giác của góc HAC). Do đó: \(\widehat {BAD} = \widehat {BDA}\)

Tam giác ABD có: \(\widehat {KBH} + \widehat {BAD} + \widehat {BDA} = {180^0}.\)

Do đó: \(\widehat {BDA} = {{{{180}^0} - \widehat {KBH}} \over 2}(2)\)

Từ (1) và (2) ta có: \(\widehat {BHK} = \widehat {BDA}\)

Mà góc BHK và BDA đồng vị. Vậy KH // AD.

Loigiaihay.com

Các bài liên quan: - Ôn tập chương 2 - Hình học 7

>>Học trực tuyến lớp 7 trên Tuyensinh247.com mọi lúc, mọi nơi với đầy đủ các môn: Toán, Văn, Anh, Lý, Sử, Sinh cùng các thầy cô giáo dạy giỏi, nổi tiếng.

Gửi văn hay nhận ngay phần thưởng