Bài 8 trang 101 SGK Toán 9 tập 1

Bình chọn:
4.5 trên 18 phiếu

Giải bài 8 trang 101 SGK Toán 9 tập 1. Cho góc nhọn xAy và hai điểm B, C thuộc Ax. Dựng đường tròn (O) đi qua B và C sao cho tâm O nằm trên tia Ay.

Đề bài

Cho góc nhọn \(xAy\) và hai điểm \(B,\ C\) thuộc \(Ax\). Dựng đường tròn \((O)\) đi qua \(B\) và \(C\) sao cho tâm \(O\) nằm trên tia \(Ay\).

Phương pháp giải - Xem chi tiết

Bài toán dựng hình chia làm \(4\) bước:

Bước 1. Phân tích: giải sử hình cần dựng đã được vẽ. Lập luận để tìm cách dựng được hình.

Bước 2. Dựng hình: Dựa vào bước phân tích trên liệt kê thứ tự các phép dựng hình cơ bản.

Bước 3. Chứng minh: Bằng lí luận, chứng minh hình vừa dựng thỏa mãn tất cả các giả thiết của bài toán.

Bước 4. Biện luận: thiết lập điều kiện giải được của bài toán. Tức là xét xem bài toán giải được trong trường hợp nào và có bao nhiêu nghiệm.

Lời giải chi tiết

Phân tích 

Giả sử đã dựng được đường tròn \((O)\) thỏa mãn đề bài.

-  Vì \(O\) đi qua \(B,\ C\) nên \(OB=OC\) do đó \(O\) nằm trên đường trung trực \(m\) của \(BC\).

- \(O\) nằm trên tia \(Ay\).

Cách dựng:

- Dựng đường trung trực \(m\) của \(BC\), cắt \(Ay\) tại \(O\).

- Dựng đường tròn \((O;\ OB)\), đó là đường tròn phải dựng.

Chứng minh

Vì điểm \(O\in m\) nên \(OB=OC\), suy ra đường tròn \((O;\ OB)\) đi qua \(B\) và \(C\).

Mặt khác, \(O\in Ay\) nên đường tròn \((O)\) thỏa mãn đề bài.

Biện luận

Vì \(m\) luôn cắt tia \(Ay\) tại một điểm \(O\) duy nhất nên bài toán luôn có một nghiệm hình.

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan