Bài 5 trang 69 SGK Toán 9 tập 2

Bình chọn:
4 trên 72 phiếu

Giải bài 5 trang 69 SGK Toán 9 tập 2. Hai tiếp tuyến của đường tròn (O) tại A và B cắt nhau tại M

Đề bài

 Hai tiếp tuyến của đường tròn \((O)\) tại \(A\) và \(B\) cắt nhau tại \(M\). Biết \(\widehat{AMB}\).

a) Tính số đo của góc ở tâm tạo bởi hai bán kính \(OA, OB\).

b) Tính số đo mỗi cung \(AB\) (cung lớn và cug nhỏ).

Phương pháp giải - Xem chi tiết

a) Sử dụng tính chất tia tiếp tuyến

Sử dụng định lý: Tổng bốn góc trong tứ giác bằng \(360^\circ \)

b) Sử dụng:

Số đo cung nhỏ bằng số đo góc ở tâm chắn cung đó

Số đo cung lớn bằng \(360^\circ \) trừ số đo cung nhỏ (có chung hai mút với cung lớn).

Lời giải chi tiết

 

a) Vì \(MA,MB\) là hai tiếp tuyến của \(\left( O \right)\) cắt nhau tại \(M\) nên \(\widehat {OAM} = 90^\circ ;\,\widehat {MBO} = 90^\circ \)

Xét tứ giác \(OBMA\) có \(\widehat {OAB} + \widehat {OBA} + \widehat {AMB} + \widehat {AOB} = 360^\circ \) (định lý)

Hay \(90^\circ  + 90^\circ  + 35^\circ  + \widehat {AOB} = 360^\circ \\ \Rightarrow \widehat {AOB} = 145^\circ .\)

b) Từ \(\widehat {AOB} = {145^0}\). Suy ra số đo cung nhỏ \(\overparen{AB}\) là \(145^0\) và số đo cung lớn \(\overparen{AB}\) : \({360^0} - {145^0} = {215^0}\) 

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

Các bài liên quan: - Bài 1. Góc ở tâm. Số đo cung

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com