Bài 2 trang 69 SGK Toán 9 tập 2


Cho hai đường thẳng xy và st cắt nhau tại O

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Đề bài

Cho hai đường thẳng \(xy\) và \(st\) cắt nhau tại \(O\), trong các góc tạo thành có góc \(40^{\circ}\). Vẽ một đường tròn tâm \(O\). Tính số đo của các góc ở tâm xác định bởi hai trong bốn tia gốc O.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+ Sử dụng hai góc kề bù có tổng số đo bằng \(180^\circ .\)

+ Hai góc đối đỉnh có số đo bằng nhau 

Lời giải chi tiết

 

Ta có \(\widehat {xOs} = 40^\circ \) , suy ra \(\widehat {yOt} = \widehat {xOs} = 40^\circ \) (hai góc đối đỉnh)

Lại có \(\widehat {xOs} + \widehat {xOt} = 180^\circ \) (hai góc kề bù) nên \(\widehat {xOt} = 180^\circ  - \widehat {xOs} = 180^\circ  - 40^\circ  = 140^\circ .\)

Lại có \(\widehat {sOy} = \widehat {xOt} = 140^\circ \) (hai góc đối đỉnh)

Vậy \(\widehat {xOt} = \widehat {sOy} = 140^\circ ;\,\widehat {xOs} = \widehat {tOy} = 40^\circ \) 

và \(\widehat{xOy}\) = \(\widehat{sOt}\) = \(180^{\circ}\)


Bình chọn:
4.3 trên 161 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay

Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí