Bài 16 trang 146 Tài liệu dạy – học Toán 9 tập 1


Giải bài tập Cho hai đường tròn (O) và (O’) cắt nhau tại A và B.

Đề bài

Cho hai đường tròn (O) và (O’) cắt nhau tại A và B. Vẽ cát tuyến chung MAN sao cho MA=AN. Đường vuông góc với MN tại A cắt OO’ tại I. Chứng minh I là trung điểm của OO’.

Phương pháp giải - Xem chi tiết

+) Gọi H và K lần lượt là trung điểm của \(AM\) và \(AN\), chứng minh  A là trung điểm của HK và \(OHKO'\) là hình thang.

+) Sử dụng tính chất đường trung bình của hình thang.

Lời giải chi tiết

 

Gọi H và K lần lượt là trung điểm của \(AM\) và \(AN\) ta có: \(AH = \dfrac{1}{2}AM,\,\,AK = \dfrac{1}{2}AN \)

\(\Rightarrow AH = AK\) \( \Rightarrow \) A là trung điểm của \(HK\).

Áp dụng quan hệ vuông góc giữa đường kính và dây cung ta có: \(\left\{ \begin{array}{l}OH \bot AM\\O'K \bot AN\end{array} \right. \Rightarrow OH\parallel O'K \Rightarrow \) Tứ giác \(OHKO'\) là hình thang.

Xét hình thang  \(OHKO'\) ta có:

\(A\) là trung điểm của \(HK\).

\(IA \bot MN \Rightarrow IA//OH//O'K\)

Do đó \(I\) là trung điểm của \(OO'\) (đpcm).

 Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài