Bài 9.1 phần bài tập bổ sung trang 39 SBT toán 8 tập 1


Đề bài

Biết rằng \(Q \displaystyle = {{{x^2} - 6x + 9} \over {{x^2} - 9}}\)\(\displaystyle = {{{{\left( {x - 3} \right)}^2}} \over {\left( {x - 3} \right)\left( {x + 3} \right)}}\)\(\displaystyle = {{x - 3} \over {x + 3}}\) . 

Hãy tính giá trị của biểu thức Q. Câu trả lời nào sau đây là sai ?

A. Giá trị của \(Q\) tại \(x = 4\) là \(\displaystyle {{4 - 3} \over {4 + 3 }} = {1 \over 7}\)

B. Giá trị của \(Q\) tại \(x = 1\) là \(\displaystyle {{1 - 3} \over {1 + 3}} =  - {1 \over 2}\)

C. Giá trị của \(Q\) tại \(x = 3\) là \(\displaystyle {{3 - 3} \over {3 + 3}} = 0\)

D. Giá trị của \(Q\) tại \(x = 3\) không xác định.

Phương pháp giải - Xem chi tiết

- Tìm điều kiện xác định của \(Q\). 

- Biến đổi biểu thức về dạng đơn giản.

- Kiểm tra các đáp án đã cho rồi chọn câu sai.

Lời giải chi tiết

Điều kiện: \({x^2} - 9 \ne 0 \Leftrightarrow {x^2} \ne 9 \Leftrightarrow x \ne  \pm 3\)

Ta có: \( Q= \displaystyle {{{x^2} - 6x + 9} \over {{x^2} - 9}}\)\(\displaystyle = {{{{\left( {x - 3} \right)}^2}} \over {\left( {x - 3} \right)\left( {x + 3} \right)}} = {{x - 3} \over {x + 3}}\)

Giá trị của \(Q\) tại \(x = 3\) là \(\displaystyle {{3 - 3} \over {3 + 3}} = 0\) sai vì với \(x = 3\) thì phân thức đã cho không xác định. 

Vậy chọn đáp án C. 

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến lớp 8 trên Tuyensinh247.com cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.