Bài 48 trang 37 SBT toán 8 tập 1


Đề bài

Có bạn nói rằng các phân thức \(\displaystyle {{2x} \over {2x - 2}},\)\(\displaystyle {1 \over {{x^2} - 2x + 1}},\)\(\displaystyle {{5{x^3}} \over {\left( {x - 1} \right)\left( {{x^2} + 1} \right)}}\)  có cùng điều kiện của biến \(x\).

Điều đó đúng hay sai ? Vì sao ? 

Phương pháp giải - Xem chi tiết

Vận dụng kiến thức : Cách tìm điều kiện để giá trị của phân thức được xác định là tìm điều kiện của biến để giá trị của mẫu thức khác \(0\).

Lời giải chi tiết

Các phân thức  \(\displaystyle {{2x} \over {2x - 2}},\)\(\displaystyle {1 \over {{x^2} - 2x + 1}},\)\(\displaystyle {{5{x^3}} \over {\left( {x - 1} \right)\left( {{x^2} + 1} \right)}}\) có cùng điều kiện biến \(x\) là đúng vì:

Phân thức \(\displaystyle {{2x} \over {2x - 2}}\)  xác định khi \(2x - 2 \ne 0\)\(\Rightarrow 2x \ne 2\)\( \Rightarrow x \ne 1;\)

Phân thức \(\displaystyle {1 \over {{x^2} - 2x + 1}} = {1 \over {{{\left( {x - 1} \right)}^2}}}\) xác định khi \({\left( {x - 1} \right)^2} \ne 0\)\( \Rightarrow x - 1 \ne 0 \)\(\Rightarrow x \ne 1;\)

Phân thức \(\displaystyle  {{5{x^3}} \over {\left( {x - 1} \right)\left( {{x^2} + 1} \right)}}\) xác định khi \(\left( {x - 1} \right)\left( {{x^2} + 1} \right) \ne 0\)\( \Rightarrow x - 1 \ne 0\)\( \Rightarrow x \ne 1\).

Chú ý: \(x^2+1\ge 1>0\) với mọi \(x\) nên \(x^2+1\ne 0\) với mọi \(x\).

Loigiaihay.com


Bình chọn:
4 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

>> Học trực tuyến lớp 8 trên Tuyensinh247.com cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.