Bài 57 trang 38 SBT toán 8 tập 1


Giải bài 57 trang 38 sách bài tập toán 8. Tìm giá trị nguyên của biến x để tại đó giá trị của mỗi biểu thức sau là một số nguyên ...

Lựa chọn câu để xem lời giải nhanh hơn

Tìm giá trị nguyên của biến \(x\) để tại đó giá trị của mỗi biểu thức sau là một số nguyên :

LG a

\(\displaystyle {2 \over {x - 3}}\) 

Phương pháp giải:

- Tìm điều kiện xác định của các phân thức. 

- Biến đổi biểu thức về dạng đơn giản.

- Để phân thức có giá trị là một số nguyên thì tử thức phải chia hết cho mẫu thức.

- Vận dụng kiến thức về ước đã học, tìm giá trị của \(x\).

Lời giải chi tiết:

\(\displaystyle {2 \over {x - 3}}\) là một số nguyên nên \(2 \vdots \left( {x - 3} \right)\) và \(x \ne 3\)

\(\Rightarrow x – 3 ∈ Ư(2) = \{ - 2; -1 ; 1; 2 \}\) 

   \(\eqalign{& x - 3 =  - 2 \Rightarrow x = 1 (tm)  \cr & x - 3 =  - 1 \Rightarrow x = 2(tm)  \cr  & x - 3 = 1 \Rightarrow x = 4 (tm) \cr  & x - 3 = 2 \Rightarrow x = 5(tm) \cr} \)

Vậy với \(x ∈ \{ 1; 2; 4; 5 \}\) thì \(\displaystyle {2 \over {x - 3}}\) là một số nguyên.

LG b

\(\displaystyle {3 \over {x + 2}}\)

Phương pháp giải:

- Tìm điều kiện xác định của các phân thức. 

- Biến đổi biểu thức về dạng đơn giản.

- Để phân thức có giá trị là một số nguyên thì tử thức phải chia hết cho mẫu thức.

- Vận dụng kiến thức về ước đã học, tìm giá trị của \(x\).

Lời giải chi tiết:

\(\displaystyle {3 \over {x + 2}}\) là một số nguyên nên \(3 \vdots (x + 2)\) và \(x ≠ - 2\)

\(\Rightarrow x + 2 ∈ Ư(3) = \{ -3; -1; 1; 3 \}\)

    \(\eqalign{  & x + 2 =  - 3 \Rightarrow x =  - 5 (tm) \cr  & x + 2 =  - 1 \Rightarrow x =  - 3 (tm) \cr  & x + 2 = 1 \Rightarrow x =  - 1(tm)  \cr  & x + 2 = 3 \Rightarrow x = 1(tm) \cr} \) 

Vậy với \(x ∈ \{ -5; -3; -1; 1 \}\) thì \(\displaystyle {3 \over {x + 2}}\) là một số nguyên

LG c

\(\displaystyle {{3{x^3} - 4{x^2} + x - 1} \over {x - 4}}\)

Phương pháp giải:

- Tìm điều kiện xác định của các phân thức. 

- Biến đổi biểu thức về dạng đơn giản.

- Để phân thức có giá trị là một số nguyên thì tử thức phải chia hết cho mẫu thức.

- Vận dụng kiến thức về ước đã học, tìm giá trị của \(x\).

Lời giải chi tiết:

Đặt phép tính chia: 

Từ phép chia trên ta có:

\(\displaystyle {{3{x^3} - 4{x^2} + x - 1} \over {x - 4}}\)\(\displaystyle  = {{\left( {3{x^2} + 8x + 33} \right)\left( {x - 4} \right) + 131} \over {x - 4}}\)\(\displaystyle  = 3{x^2} + 8x + 33 + {{131} \over {x - 4}}\)

Với \(x\) là số nguyên ta có : \(3{x^2} + 8x + 33\) là số nguyên

Vậy muốn biểu thức là số nguyên thì \(131 \vdots (x – 4 )\) và \(x ≠ 4\)

\(\Rightarrow x – 4 ∈ Ư(131) = \{-131; -1; 1;\)\( 131\}\)

  \(\eqalign{ & x - 4 =  - 131 \Rightarrow x =  - 127(tm)  \cr  & x - 4 =  - 1 \Rightarrow x = 3 (tm) \cr  & x - 4 = 1 \Rightarrow x = 5  (tm)\cr  & x - 4 = 131 \Rightarrow x = 135(tm) \cr} \)

Vậy \(x ∈ \{-127; 3; 5; 135\}\) thì \(\displaystyle {{3{x^3} - 4{x^2} + x - 1} \over {x - 4}}\) là số nguyên

LG d

\(\displaystyle {{3{x^2} - x + 1} \over {3x + 2}}\)

Phương pháp giải:

- Tìm điều kiện xác định của các phân thức. 

- Biến đổi biểu thức về dạng đơn giản.

- Để phân thức có giá trị là một số nguyên thì tử thức phải chia hết cho mẫu thức.

- Vận dụng kiến thức về ước đã học, tìm giá trị của \(x\).

Lời giải chi tiết:

Ta có: 

\(\displaystyle {{3{x^2} - x + 1} \over {3x + 2}}\)

\(\begin{array}{l}
= \dfrac{{3{x^2} + 2x - 3x - 2 + 3}}{{3x + 2}}\\
= \dfrac{{x\left( {3x + 2} \right) - \left( {3x + 2} \right) + 3}}{{3x + 2}}
\end{array}\)

\(\displaystyle  = {{\left( {3x + 2} \right)\left( {x - 1} \right) + 3} \over {3x + 2}}\)\(\displaystyle  = x - 1 + {3 \over {3x + 2}}\) (với \(x \ne \displaystyle  - {3 \over 2}\) )

\(x\) là số nguyên nên \(x – 1\) là số nguyên.

Vậy muốn biểu thức đã cho là số nguyên thì \(3 ⋮ (3x + 2)\) và \(x \ne  \displaystyle - {3 \over 2}\)

\(3x + 2 ∈ Ư(3) = \{-3; -1; 1; 3 \}\)

\(3x + 2 =  - 3 \Rightarrow x =  \displaystyle - {5 \over 3}\) (loại)

\(3x + 2 =  - 1 \Rightarrow x =  - 1(tm)\)

\(3x + 2 = 1 \Rightarrow x = \displaystyle  - {1 \over 3} \) (loại)

\(3x + 2 = 3 \Rightarrow x = \displaystyle {1 \over 3} \) (loại)

Vậy với \(x = - 1\) thì biểu thức \(\displaystyle {{3{x^2} - x + 1} \over {3x + 2}}\) có giá trị nguyên.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4 trên 3 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10 năm học 2021-2022, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài