Bài 56 trang 38 SBT toán 8 tập 1


Giải bài 56 trang 38 sách bài tập toán 8. Với giá trị nào của x thì giá trị của mỗi biểu thức sau bằng 0 ...

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

Với giá trị nào của \(x\) thì giá trị của mỗi biểu thức sau bằng \(0\) :

LG a

\(\displaystyle {x \over {{x^2} - 4}} + {3 \over {{{\left( {x + 2} \right)}^2}}}\)

Phương pháp giải:

- Biến đổi phân thức về dạng đơn giản.

- Cho giá trị biểu thức bằng \(0\); giải rồi tìm giá trị của \(x\).

Lời giải chi tiết:

Điều kiện:

\(\begin{array}{l}
\left\{ \begin{array}{l}
{x^2} - 4 \ne 0\\
{\left( {x + 2} \right)^2} \ne 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
\left( {x - 2} \right)\left( {x + 2} \right) \ne 0\\
x + 2 \ne 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x - 2 \ne 0\\
x + 2 \ne 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x \ne 2\\
x \ne - 2
\end{array} \right.
\end{array}\)

\(\Leftrightarrow x\ne \pm 2\)

Ta có: 

\(\displaystyle {x \over {{x^2} - 4}} + {3 \over {{{\left( {x + 2} \right)}^2}}}\)\(\displaystyle  = {x \over {\left( {x + 2} \right)\left( {x - 2} \right)}} + {3 \over {{{\left( {x + 2} \right)}^2}}}\)\(\displaystyle  = {{x\left( {x + 2} \right) + 3\left( {x - 2} \right)} \over {\left( {x - 2} \right){{\left( {x + 2} \right)}^2}}}\)

\(\displaystyle  = {{{x^2} + 2x + 3x - 6} \over {\left( {x - 2} \right){{\left( {x + 2} \right)}^2}}}\)

\( = \dfrac{{{x^2} + 5x - 6}}{{\left( {x - 2} \right){{\left( {x + 2} \right)}^2}}}\)

\(\displaystyle  = {{{x^2} - x + 6x - 6} \over {\left( {x - 2} \right){{\left( {x + 2} \right)}^2}}}\)\(\displaystyle  = {{x\left( {x - 1} \right) + 6\left( {x - 1} \right)} \over {\left( {x - 2} \right){{\left( {x + 2} \right)}^2}}} \)\(\displaystyle = {{\left( {x - 1} \right)\left( {x + 6} \right)} \over {\left( {x - 2} \right){{\left( {x + 2} \right)}^2}}}\)

Biểu thức bằng \(0\) khi \(\left( {x - 1} \right)\left( {x + 6} \right) = 0\) 

Ta có: \(\left( {x - 1} \right)\left( {x + 6} \right) = 0 \)

\(\Rightarrow x - 1=0 \) hoặc \(x +6=0\)

\(\Rightarrow x = 1 \) (thỏa mãn) hoặc \(x =  - 6\) (thỏa mãn)

Vậy với \(x = 1\) hoặc \(x = - 6\) thì giá trị của biểu thức bằng \(0\).

LG b

\(\displaystyle {1 \over {{x^2} + x + 1}} + x - 1\) 

Phương pháp giải:

- Biến đổi phân thức về dạng đơn giản.

- Cho giá trị biểu thức bằng \(0\); giải rồi tìm giá trị của \(x\).

Lời giải chi tiết:

Điều kiện: \({x^2} + x + 1 \ne 0.\) 

Ta có: \({x^2} + x + 1 = {x^2} + 2.x.\displaystyle {1 \over 2} + {1 \over 4} + {3 \over 4}\)\(\displaystyle  = {\left( {x + {1 \over 2}} \right)^2} + {3 \over 4} \ne 0\) với mọi \(x\).

Do đó: \(\displaystyle {1 \over {{x^2} + x + 1}} + x - 1\)\(\displaystyle  = {{1 + \left( {x - 1} \right)\left( {{x^2} + x + 1} \right)} \over {{x^2} + x + 1}}\)\(\displaystyle  = {{1 + {x^3} - 1} \over {{x^2} + x + 1}} = {{{x^3}} \over {{x^2} + x + 1}}\)

Biểu thức bằng \(0\) khi \({x^3} = 0\) \( \Rightarrow x = 0\)

Vậy với \(x = 0\) thì giá trị của biểu thức bằng \(0\). 

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

Tham Gia Group Dành Cho Lớp 8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí