Bài 45 trang 36 SBT toán 8 tập 1


Giải bài 45 trang 36 sách bài tập toán 8. Thực hiện các phép tính sau ...

Lựa chọn câu để xem lời giải nhanh hơn

Thực hiện các phép tính sau : 

LG a

\(\displaystyle \left( {{{5x + y} \over {{x^2} - 5xy}} + {{5x - y} \over {{x^2} + 5xy}}} \right)\)\(.\displaystyle {{{x^2} - 25{y^2}} \over {{x^2} + {y^2}}}\)

Phương pháp giải:

Vận dụng kiến thức về các quy tắc của các phép toán cộng, trừ, nhân, chia các phân thức.

Giải chi tiết:

\(\displaystyle \left( {{{5x + y} \over {{x^2} - 5xy}} + {{5x - y} \over {{x^2} + 5xy}}} \right)\)\(.\displaystyle {{{x^2} - 25{y^2}} \over {{x^2} + {y^2}}}\) 

\(\displaystyle  = \left[ {{{5x + y} \over {x\left( {x - 5y} \right)}} + {{5x - y} \over {x\left( {x + 5y} \right)}}} \right]\)\(.\displaystyle {{{x^2} - 25{y^2}} \over {{x^2} + {y^2}}}  \)\(\displaystyle = {{\left( {5x + y} \right)\left( {x + 5y} \right) + \left( {5x - y} \right)\left( {x - 5y} \right)} \over {x\left( {x - 5y} \right)\left( {x + 5y} \right)}}.\)\(\displaystyle {{\left( {x - 5y} \right)\left( {x + 5y} \right)} \over {{x^2} + {y^2}}}  \)\(\displaystyle  = {{5{x^2} + 25xy + xy + 5{y^2} + 5{x^2} - 25xy - xy + 5{y^2}} \over {x\left( {{x^2} + {y^2}} \right)}}  \)\(\displaystyle = {{10{x^2} + 10{y^2}} \over {x\left( {{x^2} + {y^2}} \right)}} = {{10\left( {{x^2} + {y^2}} \right)} \over {x\left( {{x^2} + {y^2}} \right)}}\)\(\displaystyle  = {{10} \over x} \)

LG b

\(\displaystyle {{4xy} \over {{y^2} - {x^2}}}\)\(:\displaystyle \left( {{1 \over {{x^2} + 2xy + {y^2}}} - {1 \over {{x^2} - {y^2}}}} \right)\)

Phương pháp giải:

Vận dụng kiến thức về các quy tắc của các phép toán cộng, trừ, nhân, chia các phân thức.

Giải chi tiết:

\(\displaystyle {{4xy} \over {{y^2} - {x^2}}}:\)\(\displaystyle \left( {{1 \over {{x^2} + 2xy + {y^2}}} - {1 \over {{x^2} - {y^2}}}} \right)\)

\(\displaystyle  = {{4xy} \over {{y^2} - {x^2}}}:\)\(\displaystyle \left[ {{1 \over {{{\left( {x + y} \right)}^2}}} - {1 \over {\left( {x + y} \right)\left( {x - y} \right)}}} \right]  \)\(\displaystyle   = {{4xy} \over {{y^2} - {x^2}}}:{{x - y - \left( {x + y} \right)} \over {{{\left( {x + y} \right)}^2}\left( {x - y} \right)}}\)\(\displaystyle  = {{4xy} \over {{y^2} - {x^2}}}:{{ - 2y} \over {{{\left( {x + y} \right)}^2}\left( {x - y} \right)}}\) \(\displaystyle  = {{4xy} \over {{y^2} - {x^2}}}.{{{{\left( {x + y} \right)}^2}\left( {y - x} \right)} \over {2y}}  \)\(\displaystyle  = {{4xy{{\left( {x + y} \right)}^2}\left( {y - x} \right)} \over {\left( {y + x} \right)\left( {y - x} \right).2y}}\)\( = 2x\left( {x + y} \right)\)

LG c

\(\displaystyle \left[ {{1 \over {{{\left( {2x - y} \right)}^2}}} + {2 \over {4{x^2} - {y^2}}} + {1 \over {{{\left( {2x + y} \right)}^2}}}} \right]\)\(. \displaystyle {{4{x^2} + 4xy + {y^2}} \over {16x}}\)

Phương pháp giải:

Vận dụng kiến thức về các quy tắc của các phép toán cộng, trừ, nhân, chia các phân thức.

Giải chi tiết:

\(\displaystyle \left[ {{1 \over {{{\left( {2x - y} \right)}^2}}} + {2 \over {4{x^2} - {y^2}}} + {1 \over {{{\left( {2x + y} \right)}^2}}}} \right]\)\( \displaystyle .{{4{x^2} + 4xy + {y^2}} \displaystyle \over {16x}}\)

\(\displaystyle = \left[ {{1 \over {{{\left( {2x - y} \right)}^2}}} + {2 \over {\left( {2x + y} \right)\left( {2x - y} \right)}} + {1 \over {{{\left( {2x + y} \right)}^2}}}} \right]\)\(\displaystyle .{{{{\left( {2x + y} \right)}^2}} \over {16x}} \)\(\displaystyle   = {{{{\left( {2x + y} \right)}^2} + 2\left( {2x + y} \right)\left( {2x - y} \right) + {{\left( {2x - y} \right)}^2}} \over {{{\left( {2x + y} \right)}^2}.{{\left( {2x - y} \right)}^2}}}\)\(\displaystyle .{{{{\left( {2x + y} \right)}^2}} \over {16x}} \)\(\displaystyle  = {{{{\left[ {\left( {2x + y} \right) + \left( {2x - y} \right)} \right]}^2}} \over {16x{{\left( {2x - y} \right)}^2}}} \)\(\displaystyle = {{{{\left( {4x} \right)}^2}} \over {16x{{\left( {2x - y} \right)}^2}}} = {{16{x^2}} \over {16x{{\left( {2x - y} \right)}^2}}}\)\(\displaystyle  = {x \over {{{\left( {2x - y} \right)}^2}}} \) 

LG d

\(\displaystyle \left( {{2 \over {x + 2}} - {4 \over {{x^2} + 4x + 4}}} \right)\)\(:\displaystyle \left( {{2 \over {{x^2} - 4}} + {1 \over {2 - x}}} \right)\)

Phương pháp giải:

Vận dụng kiến thức về các quy tắc của các phép toán cộng, trừ, nhân, chia các phân thức.

Giải chi tiết:

\(\displaystyle \left( {{2 \over {x + 2}} - {4 \over {{x^2} + 4x + 4}}} \right)\)\(\displaystyle :\left( {{2 \over {{x^2} - 4}} + {1 \over {2 - x}}} \right)\)

\(\displaystyle = \left[ {{2 \over {x + 2}} - {4 \over {{{\left( {x + 2} \right)}^2}}}} \right]\)\(:\displaystyle \left[ {{2 \over {\left( {x + 2} \right)\left( {x - 2} \right)}} - {1 \over {x - 2}}} \right] \)\(\displaystyle   = {{2\left( {x + 2} \right) - 4} \over {{{\left( {x + 2} \right)}^2}}}:{{2 - \left( {x + 2} \right)} \over {\left( {x + 2} \right)\left( {x - 2} \right)}}\)\(\displaystyle  = {{2x + 4 - 4} \over {{{\left( {x + 2} \right)}^2}}}:{{2 - x - 2} \over {\left( {x + 2} \right)\left( {x - 2} \right)}}\)\(\displaystyle   = {{2x} \over {{{\left( {x + 2} \right)}^2}}}.{{\left( {x + 2} \right)\left( {x - 2} \right)} \over { - x}}\)\(\displaystyle  = {{2\left( {x - 2} \right)} \over { - \left( {x + 2} \right)}} = {{2\left( {2 - x} \right)} \over {x + 2}} \)

Loigiaihay.com


Bình chọn:
3.9 trên 8 phiếu

>> Học trực tuyến lớp 8 trên Tuyensinh247.com cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.