Bài 2.96 trang 136 SBT giải tích 12


Đề bài

Phương trình \(\displaystyle  1 + {3^{\frac{x}{2}}} = {2^x}\) có bao nhiêu nghiệm?

A. \(\displaystyle  0\)                        B. \(\displaystyle  1\)

C. \(\displaystyle  2\)                        D. Vô số

Phương pháp giải - Xem chi tiết

Chia cả hai vế của phương trình cho \(\displaystyle  {2^x}\) và sử dụng phương pháp hàm số để giải phương trình.

Lời giải chi tiết

Ta có: \(\displaystyle  1 + {3^{\frac{x}{2}}} = {2^x}\)

\(\begin{array}{l}
\Leftrightarrow 1 + {\left( {{3^{\frac{1}{2}}}} \right)^x} = {2^x}\\
\Leftrightarrow 1 + {\left( {\sqrt 3 } \right)^x} = {2^x}
\end{array}\)

Chia cả hai vế của phương trình cho \(2^x\) ta được:

\(\begin{array}{l}
\frac{1}{{{2^x}}} + \frac{{{{\left( {\sqrt 3 } \right)}^x}}}{{{2^x}}} = 1\\
\Leftrightarrow {\left( {\frac{1}{2}} \right)^x} + {\left( {\frac{{\sqrt 3 }}{2}} \right)^x} = 1
\end{array}\)

Xét hàm \(f\left( x \right) = {\left( {\frac{1}{2}} \right)^x} + {\left( {\frac{{\sqrt 3 }}{2}} \right)^x}\) có

\(f'\left( x \right) = {\left( {\frac{1}{2}} \right)^x}\ln \frac{1}{2} + {\left( {\frac{{\sqrt 3 }}{2}} \right)^x}\ln \frac{{\sqrt 3 }}{2} < 0\) với mọi \(\displaystyle  x \in \mathbb{R}\)

vì \({\left( {\frac{1}{2}} \right)^x}\ln \frac{1}{2} < 0\) và \({\left( {\frac{{\sqrt 3 }}{2}} \right)^x}\ln \frac{{\sqrt 3 }}{2} < 0\)

Do đó hàm số \(\displaystyle  f\left( x \right)\) nghịch biến trên \(\displaystyle  \mathbb{R}\).

Mà \(\displaystyle  f\left( 2 \right) = 1\) nên phương trình có nghiệm duy nhất \(\displaystyle  x = 2\).

Chọn B.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.