Bài 2.96 trang 136 SBT giải tích 12


Giải bài 2.96 trang 136 sách bài tập giải tích 12. Phương trình có bao nhiêu nghiệm?...

Đề bài

Phương trình \(\displaystyle  1 + {3^{\frac{x}{2}}} = {2^x}\) có bao nhiêu nghiệm?

A. \(\displaystyle  0\)                        B. \(\displaystyle  1\)

C. \(\displaystyle  2\)                        D. Vô số

Phương pháp giải - Xem chi tiết

Chia cả hai vế của phương trình cho \(\displaystyle  {2^x}\) và sử dụng phương pháp hàm số để giải phương trình.

Lời giải chi tiết

Ta có: \(\displaystyle  1 + {3^{\frac{x}{2}}} = {2^x}\)

\(\begin{array}{l}
\Leftrightarrow 1 + {\left( {{3^{\frac{1}{2}}}} \right)^x} = {2^x}\\
\Leftrightarrow 1 + {\left( {\sqrt 3 } \right)^x} = {2^x}
\end{array}\)

Chia cả hai vế của phương trình cho \(2^x\) ta được:

\(\begin{array}{l}
\frac{1}{{{2^x}}} + \frac{{{{\left( {\sqrt 3 } \right)}^x}}}{{{2^x}}} = 1\\
\Leftrightarrow {\left( {\frac{1}{2}} \right)^x} + {\left( {\frac{{\sqrt 3 }}{2}} \right)^x} = 1
\end{array}\)

Xét hàm \(f\left( x \right) = {\left( {\frac{1}{2}} \right)^x} + {\left( {\frac{{\sqrt 3 }}{2}} \right)^x}\) có

\(f'\left( x \right) = {\left( {\frac{1}{2}} \right)^x}\ln \frac{1}{2} + {\left( {\frac{{\sqrt 3 }}{2}} \right)^x}\ln \frac{{\sqrt 3 }}{2} < 0\) với mọi \(\displaystyle  x \in \mathbb{R}\)

vì \({\left( {\frac{1}{2}} \right)^x}\ln \frac{1}{2} < 0\) và \({\left( {\frac{{\sqrt 3 }}{2}} \right)^x}\ln \frac{{\sqrt 3 }}{2} < 0\)

Do đó hàm số \(\displaystyle  f\left( x \right)\) nghịch biến trên \(\displaystyle  \mathbb{R}\).

Mà \(\displaystyle  f\left( 2 \right) = 1\) nên phương trình có nghiệm duy nhất \(\displaystyle  x = 2\).

Chọn B.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài