Bài 2.69 trang 133 SBT giải tích 12


Giải bài 2.69 trang 133 sách bài tập giải tích 12. Giải các phương trình sau:...

Đề bài

Giải các phương trình sau:

a) \(\displaystyle {e^{2 + \ln x}} = x + 3\)

b) \(\displaystyle {e^{4 - \ln x}} = x\)

c) \(\displaystyle (5 - x)\log (x - 3) = 0\)

Phương pháp giải - Xem chi tiết

a,b) Thu gọn các phương trình và giải phương trình thu được.

c) Sử dụng phương pháp giải phương trình tích \(\displaystyle AB = 0 \Leftrightarrow \left[ \begin{array}{l}A = 0\\B = 0\end{array} \right.\).

Lời giải chi tiết

a) ĐK: \(\displaystyle x > 0\).

Phương trình \(\displaystyle  \Leftrightarrow {e^2}.{e^{\ln x}} = x + 3\)\(\displaystyle  \Leftrightarrow {e^2}.x = x + 3\) \(\displaystyle  \Leftrightarrow x({e^2} - 1) = 3\) \(\displaystyle  \Leftrightarrow x = \frac{3}{{{e^2} - 1}}\left( {TM} \right)\)

Vậy phương trình có nghiệm \(\displaystyle x = \frac{3}{{{e^2} - 1}}\).

b) ĐK: \(\displaystyle x > 0\).

\(\displaystyle {e^{4 - \ln x}} = x \Leftrightarrow \frac{{{e^4}}}{{{e^{\ln x}}}} = x\)\(\displaystyle  \Leftrightarrow \frac{{{e^4}}}{x} = x \Leftrightarrow {x^2} = {e^4}\) \(\displaystyle  \Leftrightarrow \left[ \begin{array}{l}x = {e^2}\left( {TM} \right)\\x =  - {e^2}\left( {KTM} \right)\end{array} \right. \Leftrightarrow x = {e^2}\).

Vậy phương trình có nghiệm \(\displaystyle x = {e^2}\).

c) ĐK: \(\displaystyle x - 3 > 0 \Leftrightarrow x > 3\).

Khi đó \(\displaystyle (5 - x)\log (x - 3) = 0\)\(\displaystyle  \Leftrightarrow \left[ \begin{array}{l}5 - x = 0\\\log (x - 3) = 0\end{array} \right.\)\(\displaystyle  \Leftrightarrow \left[ \begin{array}{l}x = 5\\x - 3 = 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 5\\x = 4\end{array} \right.\left( {TM} \right)\).

Vậy phương trình có tập nghiệm \(\displaystyle S = \left\{ {4;5} \right\}\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài