Bài 2.103 trang 137 SBT giải tích 12


Giải bài 2.103 trang 137 sách bài tập giải tích 12. Tìm tập nghiệm của bất phương trình...

Đề bài

Tìm tập nghiệm của bất phương trình \(\displaystyle  {\left( {\frac{1}{3}} \right)^{\frac{1}{x}}} < {\left( {\frac{1}{3}} \right)^2}\).

A. \(\displaystyle  \left( { - \infty ;\frac{1}{2}} \right)\)         B. \(\displaystyle  \left( {\frac{1}{2}; + \infty } \right)\)

C. \(\displaystyle  \left( {0;\frac{1}{2}} \right)\)              D. \(\displaystyle  \left( { - \frac{1}{2};\frac{1}{2}} \right)\)

Phương pháp giải - Xem chi tiết

Sử dụng so sánh mũ \(\displaystyle  {a^m} < {a^n} \Leftrightarrow m > n\) khi \(\displaystyle  0 < a < 1\).

Lời giải chi tiết

Ta có: \(\displaystyle  {\left( {\frac{1}{3}} \right)^{\frac{1}{x}}} < {\left( {\frac{1}{3}} \right)^2}\)\(\displaystyle   \Leftrightarrow \frac{1}{x} > 2 \Leftrightarrow \frac{{1 - 2x}}{x} > 0\) \(\displaystyle   \Leftrightarrow 0 < x < \frac{1}{2}\).

Vậy tập nghiệm là \(\displaystyle  \left( {0;\frac{1}{2}} \right)\).

Chọn C.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài