Bài 2.103 trang 137 SBT giải tích 12>
Giải bài 2.103 trang 137 sách bài tập giải tích 12. Tìm tập nghiệm của bất phương trình...
Đề bài
Tìm tập nghiệm của bất phương trình \(\displaystyle {\left( {\frac{1}{3}} \right)^{\frac{1}{x}}} < {\left( {\frac{1}{3}} \right)^2}\).
A. \(\displaystyle \left( { - \infty ;\frac{1}{2}} \right)\) B. \(\displaystyle \left( {\frac{1}{2}; + \infty } \right)\)
C. \(\displaystyle \left( {0;\frac{1}{2}} \right)\) D. \(\displaystyle \left( { - \frac{1}{2};\frac{1}{2}} \right)\)
Phương pháp giải - Xem chi tiết
Sử dụng so sánh mũ \(\displaystyle {a^m} < {a^n} \Leftrightarrow m > n\) khi \(\displaystyle 0 < a < 1\).
Lời giải chi tiết
Ta có: \(\displaystyle {\left( {\frac{1}{3}} \right)^{\frac{1}{x}}} < {\left( {\frac{1}{3}} \right)^2}\)\(\displaystyle \Leftrightarrow \frac{1}{x} > 2 \Leftrightarrow \frac{{1 - 2x}}{x} > 0\) \(\displaystyle \Leftrightarrow 0 < x < \frac{1}{2}\).
Vậy tập nghiệm là \(\displaystyle \left( {0;\frac{1}{2}} \right)\).
Chọn C.
Loigiaihay.com
- Bài 2.104 trang 137 SBT giải tích 12
- Bài 2.105 trang 137 SBT giải tích 12
- Bài 2.102 trang 137 SBT giải tích 12
- Bài 2.101 trang 137 SBT giải tích 12
- Bài 2.100 trang 137 SBT giải tích 12
>> Xem thêm