Bài 2.87 trang 135 SBT giải tích 12


Giải bài 2.87 trang 135 sách bài tập giải tích 12. Tìm tập hợp nghiệm của phương trình...

Đề bài

Tìm tập hợp nghiệm của phương trình \(\displaystyle  \frac{{{{\log }_2}x}}{{{{\log }_4}2x}} = \frac{{{{\log }_8}4x}}{{{{\log }_{16}}8x}}\).

A. \(\displaystyle  \left\{ 2 \right\}\)                      B. \(\displaystyle  \left\{ {\frac{1}{4}} \right\}\)

C. \(\displaystyle  \left\{ {2;\frac{1}{4}} \right\}\)             D. \(\displaystyle  \left\{ {2;\frac{1}{{16}}} \right\}\)

Phương pháp giải - Xem chi tiết

Biến đổi phương trình về cùng cơ số và giải phương trình.

Lời giải chi tiết

ĐK: \(\displaystyle  \left\{ \begin{array}{l}x > 0\\{\log _4}2x \ne 0\\{\log _{16}}8x \ne 0\end{array} \right.\).

Khi đó, phương trình \(\displaystyle  \frac{{{{\log }_2}x}}{{{{\log }_4}2x}} = \frac{{{{\log }_8}4x}}{{{{\log }_{16}}8x}}\)\(\displaystyle   \Leftrightarrow {\log _2}x.{\log _{16}}8x = {\log _4}2x.{\log _8}4x\)

\(\displaystyle   \Leftrightarrow {\log _2}x.\frac{1}{4}{\log _2}8x\) \(\displaystyle   = \frac{1}{2}{\log _2}2x.\frac{1}{3}{\log _2}4x\)

\(\begin{array}{l}
\Leftrightarrow \frac{{{{\log }_2}x.{{\log }_2}8x}}{4} = \frac{{{{\log }_2}2x.{{\log }_2}4x}}{6}\\
\Leftrightarrow 6{\log _2}x.{\log _2}8x = 4{\log _2}2x.{\log _2}4x\\
\Leftrightarrow 3{\log _2}x.{\log _2}8x = 2{\log _2}2x.{\log _2}4x\\
\Leftrightarrow 3{\log _2}x.\left( {{{\log }_2}8 + {{\log }_2}x} \right)\\
= 2\left( {{{\log }_2}2 + {{\log }_2}x} \right)\left( {{{\log }_2}4 + {{\log }_2}x} \right)
\end{array}\)

\(\displaystyle   \Leftrightarrow 3{\log _2}x.\left( {3 + {{\log }_2}x} \right)\)\(\displaystyle   = 2\left( {1 + {{\log }_2}x} \right)\left( {2 + {{\log }_2}x} \right)\)

\(\displaystyle   \Leftrightarrow 9{\log _2}x + 3\log _2^2x\) \(\displaystyle   = 2\left( {2 + 3{{\log }_2}x + \log _2^2x} \right)\)

\(\displaystyle   \Leftrightarrow \log _2^2x + 3{\log _2}x - 4 = 0\) \(\displaystyle   \Leftrightarrow \left[ \begin{array}{l}{\log _2}x = 1\\{\log _2}x =  - 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\x = \frac{1}{{16}}\end{array} \right.\left( {TM} \right)\)

Vậy tập nghiệm \(\displaystyle  \left\{ {2;\frac{1}{{16}}} \right\}\).

Chọn D.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.


Góp ý Loigiaihay.com, nhận quà liền tay
Gửi bài