Bài 2.70 trang 133 SBT giải tích 12


Giải bài 2.70 trang 133 sách bài tập giải tích 12. Giải các bất phương trình mũ sau:...

Lựa chọn câu để xem lời giải nhanh hơn

Giải các bất phương trình mũ sau:

LG a

\(\displaystyle {(8,4)^{\frac{{x - 3}}{{{x^2} + 1}}}} < 1\)

Phương pháp giải:

Biến đổi bất phương trình về cùng cơ số.

Lời giải chi tiết:

\(\displaystyle {(8,4)^{\frac{{x - 3}}{{{x^2} + 1}}}} < 1\)\(\displaystyle  \Leftrightarrow 8,{4^{\frac{{x - 3}}{{{x^2} + 1}}}} < 8,{4^0}\)\(\displaystyle  \Leftrightarrow \frac{{x - 3}}{{{x^2} + 1}} < 0 \)

\( \Leftrightarrow x - 3 < 0\) (vì \(x^2+1>0,\forall x\))

\(\Leftrightarrow x < 3\)

LG b

\(\displaystyle {2^{|x - 2|}} > {4^{|x + 1|}}\)

Phương pháp giải:

Biến đổi bất phương trình về cùng cơ số.

Lời giải chi tiết:

\(\displaystyle {2^{|x - 2|}} > {4^{|x + 1|}}\)\(\displaystyle  \Leftrightarrow {2^{|x - 2|}} > {2^{2|x + 1|}}\)\(\displaystyle  \Leftrightarrow |x - 2| > 2|x + 1|\)

\( \Leftrightarrow {\left( {x - 2} \right)^2} > 4{\left( {x + 1} \right)^2}\)

\(\displaystyle  \Leftrightarrow {x^2} - 4x + 4 > 4({x^2} + 2x + 1)\)

\( \Leftrightarrow {x^2} - 4x + 4 > 4{x^2} + 8x + 4\)

\(\displaystyle  \Leftrightarrow 3{x^2} + 12x < 0\)\(\displaystyle  \Leftrightarrow  - 4 < x < 0\).

LG c

\(\displaystyle \frac{{{4^x} - {2^{x + 1}} + 8}}{{{2^{1 - x}}}} < {8^x}\)

Phương pháp giải:

Giải bất phương trình bằng phương pháp đặt ẩn phụ.

Lời giải chi tiết:

\(\displaystyle \frac{{{4^x} - {2^{x + 1}} + 8}}{{{2^{1 - x}}}} < {8^x}\)

\( \Leftrightarrow {4^x} - {2^{x + 1}} + 8 < {8^x}{.2^{1 - x}}\) (vì \({2^{1 - x}} > 0\))

\(\displaystyle  \Leftrightarrow {2^{2x}} - {2.2^x} + 8 < {2^{3x}}{.2^{1 - x}}\)

\(\begin{array}{l}
\Leftrightarrow {2^{2x}} - {2.2^x} + 8 < {2^{2x + 1}}\\
\Leftrightarrow {2^{2x}} - {2.2^x} + 8 - {2^{2x + 1}} < 0\\
\Leftrightarrow {2^{2x}} - {2.2^x} + 8 - {2.2^{2x}} < 0\\
\Leftrightarrow - {2^{2x}} - {2.2^x} + 8 < 0
\end{array}\)

\(\displaystyle  \Leftrightarrow {2^{2x}} + {2.2^x} - 8 > 0\)

Đặt \(\displaystyle t = {2^x} > 0\) ta được: \(\displaystyle {t^2} + 2t - 8 > 0\) \(\displaystyle  \Leftrightarrow \left[ \begin{array}{l}t <  - 4\\t > 2\end{array} \right.\).

Kết hợp với \(\displaystyle t > 0\) ta được \(\displaystyle t > 2\).

Suy ra \(\displaystyle {2^x} > 2 \Leftrightarrow x > 1\).

LG d

\(\displaystyle \frac{1}{{{3^x} + 5}} \le \frac{1}{{{3^{x + 1}} - 1}}\)

Phương pháp giải:

Giải bất phương trình bằng phương pháp đặt ẩn phụ.

Lời giải chi tiết:

Đặt \(\displaystyle t = {3^x}\left( {t > 0} \right)\), ta có bất phương trình \(\displaystyle \frac{1}{{t + 5}} \le \frac{1}{{3t - 1}}\)

\(\displaystyle  \Leftrightarrow \frac{1}{{t + 5}} - \frac{1}{{3t - 1}} \le 0\)

\( \Leftrightarrow \frac{{3t - 1 - t - 5}}{{\left( {t + 5} \right)\left( {3t - 1} \right)}} \le 0\)

\(\displaystyle  \Leftrightarrow \frac{{2t - 6}}{{\left( {t + 5} \right)\left( {3t - 1} \right)}} \le 0\)

\(\displaystyle  \Leftrightarrow \frac{{2t - 6}}{{3t - 1}} \le 0\) (do \(\displaystyle t + 5 > 0\))

\(\displaystyle  \Leftrightarrow \frac{1}{3} < t \le 3\)

Do đó \(\displaystyle \frac{1}{3} < {3^x} \le 3 \Leftrightarrow  - 1 < x \le 1\) .

Vậy \(\displaystyle  - 1 < x \le 1\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài