Bài 2.73 trang 134 SBT giải tích 12


Đề bài

Tìm số tự nhiên \(\displaystyle n\) bé nhất sao cho:

a) \(\displaystyle {\left( {\frac{1}{2}} \right)^n} \le {10^{ - 9}}\)

b) \(\displaystyle 3 - {\left( {\frac{7}{5}} \right)^n} \le 0\)

c) \(\displaystyle 1 - {\left( {\frac{4}{5}} \right)^n} \ge 0,97\)

d) \(\displaystyle {\left( {1 + \frac{5}{{100}}} \right)^n} \ge 2\)

Phương pháp giải - Xem chi tiết

Giải từng bất phương trình, sử dụng MTBT để tìm số tự nhiên \(\displaystyle m\) thỏa mãn yêu cầu.

Lời giải chi tiết

a) Ta có: \(\displaystyle {\left( {\frac{1}{2}} \right)^n} \le {10^{ - 9}}\) \(\displaystyle  \Leftrightarrow n \ge {\log _{\frac{1}{2}}}{10^{ - 9}}\) \(\displaystyle  \Leftrightarrow n \ge 9{\log _2}10 \approx 29,897\)

Vì \(\displaystyle n\) là số tự nhiên bé nhất nên \(\displaystyle n = 30\).

b) Ta có: \(\displaystyle 3 - {\left( {\frac{7}{5}} \right)^n} \le 0\)\(\displaystyle  \Leftrightarrow {\left( {\frac{7}{5}} \right)^n} \ge 3\) \(\displaystyle  \Leftrightarrow n \ge {\log _{\frac{7}{5}}}3 \approx 3,265\)

Mà \(\displaystyle n\) là số tự nhiên bé nhất nên \(\displaystyle n = 4\).

c) Ta có: \(\displaystyle 1 - {\left( {\frac{4}{5}} \right)^n} \ge 0,97\)\(\displaystyle  \Leftrightarrow {\left( {\frac{4}{5}} \right)^n} \le 0,03\) \(\displaystyle  \Leftrightarrow n \le {\log _{\frac{4}{5}}}0,03 \approx 15,71\)

Mà \(\displaystyle n\) là số tự nhiên bé nhất nên \(\displaystyle n = 16\).

d) Ta có: \(\displaystyle {\left( {1 + \frac{5}{{100}}} \right)^n} \ge 2\)\(\displaystyle  \Leftrightarrow {\left( {\frac{{21}}{{20}}} \right)^n} \ge 2\) \(\displaystyle  \Leftrightarrow n \ge {\log _{\frac{{21}}{{20}}}}2 \approx 14,21\)

Mà \(\displaystyle n\) là số tự nhiên bé nhất nên \(\displaystyle n = 15\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.