Bài 2.105 trang 137 SBT giải tích 12


Đề bài

Tìm tập hợp nghiệm của bất phương trình \(\displaystyle  {\log _2}\frac{{3x}}{{x + 2}} > 1\).

A. \(\displaystyle  \left( { - \infty ; - 2} \right)\)

B. \(\displaystyle  \left( {4; + \infty } \right)\)

C. \(\displaystyle  \left( { - \infty ; - 2} \right) \cup \left( {4; + \infty } \right)\)

D. \(\displaystyle  \left( { - 2;4} \right)\)

Phương pháp giải - Xem chi tiết

Sử dụng công thức \(\displaystyle  {\log _a}f\left( x \right) > m \Leftrightarrow f\left( x \right) > {a^m}\) với \(\displaystyle  a > 1\).

Lời giải chi tiết

Ta có: \(\displaystyle  {\log _2}\frac{{3x}}{{x + 2}} > 1\)\(\displaystyle   \Leftrightarrow \frac{{3x}}{{x + 2}} > 2\) \(\displaystyle   \Leftrightarrow \frac{{3x - 2x - 4}}{{x + 2}} > 0\) \(\displaystyle   \Leftrightarrow \frac{{x - 4}}{{x + 2}} > 0 \Leftrightarrow \left[ \begin{array}{l}x > 4\\x <  - 2\end{array} \right.\).

Vậy tập nghiệm là \(\displaystyle  \left( { - \infty ; - 2} \right) \cup \left( {4; + \infty } \right)\).

Chọn C.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.