Bài 149 trang 98 SBT Toán 8 tập 1>
Giải bài 149 trang 98 sách bài tập toán 8. Cho hình vuông ABCD. Trên cạnh AD lấy điểm F, trên cạnh DC lấy điểm E sao cho AF = DE. Chứng minh rằng AE = BF và AE ⊥ BF...
GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT
Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn
Đề bài
Cho hình vuông \(ABCD.\) Trên cạnh \(AD\) lấy điểm \(F,\) trên cạnh \(DC\) lấy điểm \(E\) sao cho \(AF = DE.\) Chứng minh rằng \(AE = BF\) và \(AE ⊥ BF.\)
Phương pháp giải - Xem chi tiết
- Vận dụng kiến thức về các trường hợp bằng nhau của tam giác.
- Áp dụng định lí: Tổng ba góc trong một tam giác bằng \(180^0\)
Lời giải chi tiết
Xét \(∆ ABF\) và \(∆ DAE:\)
\(AB = DA\) (gt)
\(\widehat {BAF} = \widehat {ADE} = {90^0}\)
\(AF = DE\) (gt)
Do đó: \(∆ ABF = ∆ DAE\, (c.g.c)\)
\(⇒ BF = AE\) và \({\widehat B_1} = {\widehat A_1}\)
Gọi \(H\) là giao điểm của \(AE\) và \(BF.\)
\(\widehat {BAF} = {\widehat A_1} + {\widehat A_2} = {90^0}\)
Suy ra: \({\widehat B_1} + {\widehat A_2} = {90^0}\)
Trong \(∆ ABH\) ta có:
\(\widehat {AHB} + {\widehat B_1} + {\widehat A_2} = {180^0}\)
\(\widehat {AHB} = {180^0} - \left( {{{\widehat B}_1} + {{\widehat A}_2}} \right)\)\( = {180^0} - {90^0} = {90^0}\)
Vậy \(AE ⊥ BF\).
Loigiaihay.com


- Bài 150 trang 98 SBT Toán 8 tập 1
- Bài 151 trang 98 SBT Toán 8 tập 1
- Bài 152 trang 99 SBT Toán 8 tập 1
- Bài 153 trang 99 SBT Toán 8 tập 1
- Bài 154 trang 99 SBT Toán 8 tập 1
>> Xem thêm