Bài 137 trang 23 SBT toán 6 tập 1


Đề bài

Tổng (hiệu) sau có chia hết cho \(3,\) cho \(9\) không \(?\)

\(a)\) \({10^{12}} - 1\)                         \(b)\) \({10^{10}} + 2\)

Phương pháp giải - Xem chi tiết

Sử dụng tính chất: Một số có tổng các chữ số chia cho \(9\) (cho \(3\)) dư \(m\) thì số đó chia cho \(9\) (cho \(3\)) cũng dư \(m\). 

Lời giải chi tiết

\(a)\) Số \({10^{12}}\) có tổng các chữ số là \(1 + \underbrace {0 + 0 + ... + 0}_{12\,\,chữ\,số\,0}=1\)

\(*\) Vì \(1\) chia cho \(3\) dư \(1\) nên \({10^{12}}\) chia cho \(3\) dư \(1\)

Suy ra \({10^{12}} - 1\)  chia hết cho \(3\)

\(*\) Vì \(1\) chia cho \(9\)  dư \(1\) nên \({10^{12}}\) chia cho \(9\) dư \(1\) 

Suy ra \({10^{12}} - 1\) chia hết cho \(9\)

\(b)\) Số \({10^{10}}\) có tổng các chữ số \(1 + \underbrace {0 + 0 + ... + 0}_{10\,\,chữ\,số\,0}=1\) 

Suy ra \({10^{10}} + 2=1 \underbrace {0  0  ...  0}_{9\,\,chữ\,số\,0}2 \) có tổng các chữ số là \(1 + \underbrace {0 + 0 + ... + 0}_{9\,\,chữ\,số\,0} +2 = 3\)

Ta có \(3\) chia hết cho \(3\) nhưng không chia hết cho \(9.\)

Vậy \({10^{10}} + 2\) chia hết cho \(3\) nhưng không chia hết cho \(9.\) 

Loigiaihay.com


Bình chọn:
4.6 trên 24 phiếu

>> Học trực tuyến lớp 6 chương trình mới trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 6 học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài