Bài 137 trang 23 SBT toán 6 tập 1


Giải bài 137 trang 23 sách bài tập toán 6. Tổng (hiệu) sau có chia hết cho 3, cho 9 không?...

Đề bài

Tổng (hiệu) sau có chia hết cho \(3,\) cho \(9\) không \(?\)

\(a)\) \({10^{12}} - 1\)                         \(b)\) \({10^{10}} + 2\)

Phương pháp giải - Xem chi tiết

Sử dụng tính chất: Một số có tổng các chữ số chia cho \(9\) (cho \(3\)) dư \(m\) thì số đó chia cho \(9\) (cho \(3\)) cũng dư \(m\). 

Lời giải chi tiết

\(a)\) Số \({10^{12}}\) có tổng các chữ số là \(1 + \underbrace {0 + 0 + ... + 0}_{12\,\,chữ\,số\,0}=1\)

\(*\) Vì \(1\) chia cho \(3\) dư \(1\) nên \({10^{12}}\) chia cho \(3\) dư \(1\)

Suy ra \({10^{12}} - 1\)  chia hết cho \(3\)

\(*\) Vì \(1\) chia cho \(9\)  dư \(1\) nên \({10^{12}}\) chia cho \(9\) dư \(1\) 

Suy ra \({10^{12}} - 1\) chia hết cho \(9\)

\(b)\) Số \({10^{10}}\) có tổng các chữ số \(1 + \underbrace {0 + 0 + ... + 0}_{10\,\,chữ\,số\,0}=1\) 

Suy ra \({10^{10}} + 2=1 \underbrace {0  0  ...  0}_{9\,\,chữ\,số\,0}2 \) có tổng các chữ số là \(1 + \underbrace {0 + 0 + ... + 0}_{9\,\,chữ\,số\,0} +2 = 3\)

Ta có \(3\) chia hết cho \(3\) nhưng không chia hết cho \(9.\)

Vậy \({10^{10}} + 2\) chia hết cho \(3\) nhưng không chia hết cho \(9.\) 

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.6 trên 24 phiếu

>> Học trực tuyến lớp 6 trên Tuyensinh247.com mọi lúc, mọi nơi với đầy đủ các môn: Toán, Văn, Anh, Lý, Sử, Sinh, Địa cùng các thầy cô nổi tiếng, dạy hay dễ hiểu


Gửi bài