Bài 12.3 phần bài tập bổ sung trang 23 SBT toán 6 tập 1


Đề bài

Cho \(n = \overline{7a5}  + \overline{8b4}\). Biết \(a - b = 6\) và \(n\) chia hết cho \(9.\) Tìm \(a\) và \(b.\)

Phương pháp giải - Xem chi tiết

+) Dấu hiệu chia hết cho \(9\): Tổng các chữ số chia hết \(9\)

+) Sử dụng tính chất: Một số có tổng các chữ số chia cho \(9\) dư \(m\) thì số đó chia cho \(9\) cũng dư \(m.\)

Lời giải chi tiết

Ta biết rằng một số và tổng các chữ số của nó có cùng số dư khi chia cho \(9.\)

Tổng \(\overline {7a5}  + \overline {8b4} \) chia hết cho \(9\) nên \( (7 + a + 5 + 8 + b + 4) \,\,⋮ \,\,9,\) tức là:

\( (24 + a + b )\,\,⋮ \,\,9.\)

Suy ra \(a + b \in \left\{ {3;12} \right\}.\)

Ta có \(a + b > 3\) \((\)vì \(a - b = 6)\) nên \(a + b = 12.\)

Từ \(a + b = 12\) và \(a - b = 6,\) ta có \(a = (12 + 6) : 2 = 9,\) suy ra \(b = 3.\)

Thử lại: \(795 + 834 = 1629\) chia hết cho \(9.\)

Loigiaihay.com


Bình chọn:
3.8 trên 5 phiếu

>> Học trực tuyến lớp 6 chương trình mới trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 6 học tốt, hoàn trả học phí nếu học không hiệu quả.