

Đề kiểm tra 45 phút (1 tiết) - Đề số 5 - Chương 3 - Đại số 9
Giải Đề tra kiểm 45 phút (1 tiết) - Đề số 5 - Chương 3 - Đại số 9
Đề bài
Bài 1: Giải hệ phương trình :
a){√3x−(1+√2)y=−√3(1+√3)x−(1+√2)y=√2−√3
b) {3x−5y=−72x+3y=8.
Bài 2: Tìm m, n để hai hệ phương trình sau tương đương :
{x−3y=−12x+3y=7 và {2mx+5y=1−2x+ny=4.
Bài 3: Tìm m để hệ sau có vô số nghiệm : {mx−y=1−x+y=−m.
Bài 4: Một ô tô đi trên quãng đường AB với vận tốc 50km/h rồi tiếp tục đi từ B đến C vận tốc 45km/h. Biết rằng quãng đường từ A đến C là 165km/h và thời gian đi từ A đến B ít hơn thời gian đi từ B và C là 12 giờ. Tính thời gian ô tô đi trên hai quãng đường AB và BC.
LG bài 1
Phương pháp giải:
Giải hệ phương trình bằng phương pháp thế hoặc cộng đại số
Lời giải chi tiết:
Bài 1: a) {√3x−(1+√2)y=−√3(1+√3)x−(1+√2)y=√2−√3
⇔{x=√2√3x−(1+√2y)=−√3
⇔{x=√2y=√3
Hệ có nghiệm duy nhất : (√2;√3).
b) {3x−5y=−72x+3y=8⇔{6x−10y=−146x+9y=24
⇔{19y=383x−5y=−7⇔{y=2x=1.
Hệ có nghiệm duy nhất: (1;2).
LG bài 2
Phương pháp giải:
Giải hệ phương trình thứ nhất, thế nghiệm tìm được vào hệ thứ hai ta được m,n
Thế m,n vào hệ thứ hai để thử lại
Lời giải chi tiết:
Bài 2: Giải hệ : {x−3y=−12x+3y=7⇔{x=3y−12(3y−1)+3y=7
⇔{x=3y−19y=9⇔{x=2y=1
Thế x=2 và y=1 vào hệ thứ hai, ta được :
⇔{4m+5.1=1(−2).2+n.1=4⇔{m=−1n=8.
Thử lại : m=−1 và n=8, ta có hệ : {−2x+5y=1−2x+8y=4
Hệ có nghiệm (2;1).
Vậy với m=−1 và n=8 thì hai hệ phương trình tương đương.
LG bài 3
Phương pháp giải:
Rút x từ pt thứ nhất thế vào phương trình thứ 2 ta được phương trình bậc 1 nhất ẩn với tham số m
Hệ phương trình vô số nghiệm khi pt bậc nhất trên có vô số nghiệm
Lời giải chi tiết:
Bài 3: Từ phương trình: −x+y=−m⇔y=x–m.
Thế y vào phương trình thứ nhất, ta được :
mx−(x−m)=1
⇔(m−1)x=1−m(∗)
Hệ có vô số nghiệm khi và chỉ khi phương trình (*) có vô số nghiệm :
⇔{m−1=01−m=0⇔m=1.
LG bài 4
Phương pháp giải:
Để giải bài toán bằng cách lập phương trình ta làm theo các bước:
Bước 1: Lập phương trình
+ Chọn ẩn và đặt điều kiện cho ẩn
+ Biểu diễn tất cả các đại lượng khác qua ẩn vừa chọn.
+ Lập phương trình biểu thị mối quan hệ giữa các đại lượng.
Bước 2: Giải phương trình
Bước 3: Đối chiếu điều kiện rồi kết luận.
Lời giải chi tiết:
Bài 4: Gọi x là thời gian ô tô đi từ A đến B ( x>0;x tính bằng giờ)
y là thời gian ô tô đi từ B đến C ( y>0;y tính bằng giờ).
Quãng đường AB bằng 50x(km), quãng đường BC bằng 45y(km).
Ta có hệ phương trình:
{50x+45y=165y−x=12⇔{50x+45y=165−50x+50y=25
⇔{95y=190y−x=12⇔{y=2x=32
Vậy thời gian ô tô đi trên quãng đường AB là 32 giờ; thời gian ô tô đi trên quãng đường BC là 2 giờ.
Loigiaihay.com


- Đề kiểm tra 45 phút (1 tiết) - Đề số 4 - Chương 3 - Đại số 9
- Đề kiểm tra 45 phút (1 tiết) - Đề số 3 - Chương 3 - Đại số 9
- Đề kiểm tra 45 phút (1 tiết) - Đề số 2 - Chương 3 - Đại số 9
- Đề kiểm tra 45 phút (1 tiết) - Đề số 1 - Chương 3 - Đại số 9
- Lý thuyết Ôn tập chương 3. Hệ hai phương trình bậc nhất hai ẩn
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay
>> Học trực tuyến Lớp 9 & Lộ trình UP10 trên Tuyensinh247.com
>> Chi tiết khoá học xem: TẠI ĐÂY
Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Các bài khác cùng chuyên mục