Bài 41 trang 27 SGK Toán 9 tập 2

Bình chọn:
3.8 trên 51 phiếu

Giải bài 41 trang 27 SGK Toán 9 tập 2. Giải các hệ phương trình sau:

Đề bài

Giải các hệ phương trình sau:

a)  \(\left\{ \matrix{x\sqrt 5 - \left( {1 + \sqrt 3 } \right)y = 1 \hfill \cr \left( {1 - \sqrt 3 } \right)x + y\sqrt 5 = 1 \hfill \cr} \right.\)

b)  \(\left\{ \begin{array}{l}\dfrac{{2x}}{{x + 1}} + \dfrac{y}{{y + 1}} = \sqrt 2 \\\dfrac{x}{{x + 1}} + \dfrac{{3y}}{{y + 1}} =  - 1\end{array} \right.\)  

Phương pháp giải - Xem chi tiết

a) Giải hệ phương trình bằng phương pháp thế

b) Giải hệ phương trình bằng phương pháp đặt ẩn phụ, phương pháp cộng đại số.

Lời giải chi tiết

a)  

\(\left\{ \matrix{
x\sqrt 5 - \left( {1 + \sqrt 3 } \right)y = 1(1) \hfill \cr
\left( {1 - \sqrt 3 } \right)x + y\sqrt 5 = 1(2) \hfill \cr} \right.\) 

Ta giải hệ phương trình bằng phương pháp thế:

Từ (1) ta có  \(x = \displaystyle{{\left( {1 + \sqrt 3 } \right)y + 1} \over {\sqrt 5 }}(3)\)

Thế (3) vào (2), ta được:  

\(\eqalign{
& \left( {1 - \sqrt 3 } \right)\left[ {{{\left( {1 + \sqrt 3 } \right)y + 1} \over {\sqrt 5 }}} \right] + y\sqrt 5 = 1 \cr
& \Leftrightarrow \left( {1 - \sqrt 3 } \right)\left( {1 + \sqrt 3 } \right)y + \left( {1 - \sqrt 3 } \right) + 5y = \sqrt 5 \cr
& \Leftrightarrow - 2y + 5y = \sqrt 5 + \sqrt 3 - 1 \cr&\Leftrightarrow y = {{\sqrt 5 + \sqrt 3 - 1} \over 3} \cr} \)

Thế y vừa tìm được vào (3), ta được:

\(\begin{array}{l}
x = \dfrac{{\left( {1 + \sqrt 3 } \right)\left( {\sqrt 5  + \sqrt 3  - 1} \right) + 3}}{{3\sqrt 5 }} = \dfrac{{\sqrt 5  + \sqrt 3  - 1 + \sqrt {15}  + 3 - \sqrt 3  + 3}}{{3\sqrt 5 }}\\
 = \dfrac{{\sqrt 5  + \sqrt {15}  + 5}}{{3\sqrt 5 }} = \dfrac{{\sqrt 5 \left( {1 + \sqrt 3  + \sqrt 5 } \right)}}{{3\sqrt 5 }} = \dfrac{{1 + \sqrt 3  + \sqrt 5 }}{3}
\end{array}\)

Vậy hệ phương trình có nghiệm là: \(\displaystyle\left( {{{\sqrt 5  + \sqrt 3  + 1} \over 3};{{\sqrt 5  + \sqrt 3  - 1} \over 3}} \right)\)

b)Giải hệ phương trình: (I) 

\(\left\{ \matrix{
{{2{\rm{x}}} \over {x + 1}} + {y \over {y + 1}} = \sqrt 2 \hfill \cr
{x \over {x + 1}} + {{3y} \over {y + 1}} = - 1 \hfill \cr} \right.\)

Điều kiện: \(x \ne  - 1;y \ne  - 1\)

Ta giải hệ phương trình bằng phương pháp đặt ẩn phụ.

Đặt \(u = {x \over {x + 1}};v = {y \over {y + 1}}\)

Thay vào hệ (I), ta có hệ mới với ẩn là \(u\) và \(v\) ta được:

\(\left\{ \matrix{
2u + v = \sqrt 2 (1') \hfill \cr
u + 3v = - 1(2') \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
2u + v = \sqrt 2 (3) \hfill \cr
- 2u - 6v = 2(4) \hfill \cr} \right.\)

Cộng (3) và (4) vế theo vế, ta được: \( - 5{\rm{v}} = 2 + \sqrt 2  \Leftrightarrow v = {{ - \left( {2 + \sqrt 2 } \right)} \over 5}\)

Thay \(v = {{ - \left( {2 + \sqrt 2 } \right)} \over 5}\) vào (1’), ta được:

\(2u = {{2 + \sqrt 2 } \over 5} + \sqrt 2  \Leftrightarrow 2u = {{2 + \sqrt 2  + 5\sqrt 2 } \over 5} = {{2 + 6\sqrt 2 } \over 5}\)

\(\Leftrightarrow u = {{1 + 3\sqrt 2 } \over 5}\)

Với giá trị của \(u,v\) vừa tìm được, ta thế vào để tìm nghiệm \(x, y\).

Ta có: 

\(\left\{ \matrix{
{x \over {x + 1}} = {{1 + 3\sqrt 2 } \over 5} \hfill \cr
{y \over {y + 1}} = {{ - 2 - \sqrt 2 } \over 5} \hfill \cr} \right.đk\left\{ \matrix{
x \ne - 1 \hfill \cr
y \ne - 1 \hfill \cr} \right.\)

\(\Leftrightarrow \left\{ \matrix{
x = \left( {x + 1} \right)\left( {{{1 + 3\sqrt 2 } \over 5}} \right) \hfill \cr
y = \left( {y + 1} \right){{\left( { - 2 - \sqrt 2 } \right)} \over 5} \hfill \cr} \right.\)

\(\left\{ \matrix{
5{\rm{x}} = \left( {x + 1} \right)\left( {1 + 3\sqrt 2 } \right) \hfill \cr
5y = \left( {y + 1} \right)\left( { - 2 - \sqrt 2 } \right) \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = {{1 + 3\sqrt 2 } \over {4 - 3\sqrt 2 }} \hfill \cr
y = {{-2 - \sqrt 2 } \over {7 + \sqrt 2 }} \hfill \cr} \right.\)

Vậy nghiệm của hệ phương trình là: \(\left( {{{1 + 3\sqrt 2 } \over {4 - 3\sqrt 2 }};{{-2 - \sqrt 2 } \over {7 + \sqrt 2 }}} \right)\) thỏa mãn điều kiện

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com