Đề kiểm tra 45 phút (1 tiết) - Đề số 4 - Chương 3 - Đại số 9


Giải Đề tra kiểm 45 phút (1 tiết) - Đề số 4 - Chương 3 - Đại số 9

Đề bài

Bài 1: Giải hệ phương trình :

a)\(\left\{ \matrix{  \sqrt 2 x - \sqrt 3 y =  - 1 \hfill \cr  \left( {1 + \sqrt 3 } \right)x - \sqrt 2 y = \sqrt 2  \hfill \cr}  \right.\) 

b) \(\left\{ \matrix{  4x - 3y =  - 10 \hfill \cr  {x \over 2} + {{5y} \over 4} = 2. \hfill \cr}  \right.\)

Bài 2: Tìm m để hệ phương trình : \(\left\{ \matrix{  2x - 3 = 0 \hfill \cr  ax + \left( {a - 1} \right)y = {3 \over 2} \hfill \cr}  \right.\) có nghiệm duy nhất.

Bài 3: Hai người cùng làm một công việc trong 7 giờ 12 phút thì xong. Nếu người thứ nhất làm trong 6 giờ, người thứ hai làm trong 3 giờ thì cả hai người làm được \({2 \over 3}\) công việc. Hỏi nếu mỗi người làm một mình thì trong bao lâu sẽ xong.

Lời giải chi tiết

Bài 1: a) Ta có : \(\left\{ \matrix{  \sqrt 2 x - \sqrt 3 y =  - 1 \hfill \cr  \left( {1 + \sqrt 3 } \right)x - \sqrt 2 y = \sqrt 2  \hfill \cr}  \right.\) 

\(\Leftrightarrow \left\{ \matrix{  2x - \sqrt 6 y =  - \sqrt 2  \hfill \cr  \left( {3 + \sqrt 3 } \right)x - \sqrt 6 y = \sqrt 6  \hfill \cr}  \right.\)

\( \Leftrightarrow \left\{ \matrix{  \left( {1 + \sqrt 3 } \right)x = \sqrt 6  + \sqrt 2  \hfill \cr  \sqrt 2 x - \sqrt 3 y =  - 1 \hfill \cr}  \right. \)

\(\Leftrightarrow \left\{ \matrix{  x = \sqrt 2  \hfill \cr  y = \sqrt 3  \hfill \cr}  \right.\)

Hệ có nghiệm duy nhất : \(\left( {\sqrt 2 ;\sqrt 3 } \right).\)

b)Ta có : \(\left\{ \matrix{  4x - 3y =  - 10 \hfill \cr  2x + 5y = 8 \hfill \cr}  \right.\)\(\; \Leftrightarrow \left\{ \matrix{  4x - 3y =  - 10 \hfill \cr  4x + 10y = 16 \hfill \cr}  \right.\)

\( \Leftrightarrow \left\{ \matrix{  13y = 26 \hfill \cr  4x - 3y =  - 10 \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  x =  - 1 \hfill \cr  y = 2 \hfill \cr}  \right.\)

Hệ có nghiệm duy nhất: \((− 1; 2).\)

Bài 2: Ta có : \(\left\{ \matrix{  2x - 3 = 0 \hfill \cr  ax + \left( {a - 1} \right)y = {3 \over 2} \hfill \cr}  \right. \)\(\;\Leftrightarrow \left\{ \matrix{  x = {3 \over 2} \hfill \cr  ax + \left( {a - 1} \right)y = {3 \over 2} \hfill \cr}  \right.\)

\( \Leftrightarrow \left\{ \matrix{  x = {3 \over 2} \hfill \cr  \left( {a - 1} \right)y = {3 \over 2} - {3 \over 2}a\,\,\,\,\,\,\,\,\left( * \right) \hfill \cr}  \right.\)

Hệ có nghiệm duy nhất khi và chỉ khi phương trình (*) có nghiệm duy nhất

\(\Leftrightarrow    a - 1 \ne 0  \Leftrightarrow  a \ne 1.\)

Bài 3: 7 giờ 12 phút = \({{36} \over 5}\) giờ.

Gọi \(x, y\) là thời gian để người thứ nhất và người thứ hai làm một mình xong công việc ( \(x > 0, y > 0; x, y\) tính theo giờ).

Một giờ người thứ nhất làm được \({1 \over x}\) công việc, một giờ người thứ hai làm được \({1 \over y}\) công việc.

Ta có hệ phương trình: \(\left\{ \matrix{  {1 \over x} + {1 \over y} = {5 \over {36}} \hfill \cr  {6 \over x} + {3 \over y} = {2 \over 3} \hfill \cr}  \right.\)

Đặt \(u = {1 \over x};v = {1 \over y}\left( {u > 0,v > 0} \right)\). Ta có hệ phương trình :

\(\left\{ \matrix{  u + v = {5 \over {36}} \hfill \cr  6u + 3v = {2 \over 3} \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  3u + 3v = {{15} \over {36}} \hfill \cr  6u + 3v = {2 \over 3} \hfill \cr}  \right.\)

\(\Leftrightarrow \left\{ \matrix{  3u = {1 \over 4} \hfill \cr  u + v = {5 \over {36}} \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  u = {1 \over {12}} \hfill \cr  v = {1 \over {18}}. \hfill \cr}  \right.\)

Vậy \(x = 12; v = 18.\)

Vậy người thứ nhất làm một mình trong \(12\) giờ; người thứ hai làm một mình trong \(18\) giờ.

 Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài