Đề kiểm tra 15 phút - Đề số 5 - Bài 4 - Chương 4 - Đại số 9


Giải Đề kiểm tra 15 phút - Đề số 5 - Bài 4 - Chương 4 - Đại số 9

Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Bài 1: Tìm m để phương trình \({x^2} - \left( {{m^2} + m} \right)x - 2 = 0\) có nghiệm.

Bài 2: Viết phương trình đường thẳng qua điểm \((0;− 2)\) và tiếp xúc với parabol \(y = 2{x^2}\) (P ).

Bài 3: Tìm giá trị lớn nhất của biểu thức \(y = {x \over {{x^2} + 1}}.\)

LG bài 1

Phương pháp giải:

Tích a.c<0 nên suy ra biệt thức delta dương với mọi m=>đpcm

Lời giải chi tiết:

Bài 1: Ta có  các hệ số: \(a = 1; c = − 2.\) Vì vậy \(a.c = − 2 < 0\) \( \Rightarrow {b^2} - 4ac > 0\), hay \({\left( {{m^2} + m} \right)^2} + 8 > 0,\) với mọi m.

Vậy phương trình luôn có nghiệm với mọi m.

LG bài 2

Phương pháp giải:

 Phương trình đường thẳng qua điểm \((0; − 2)\)  nên \(b=– 2\), giả sử \(y = kx – 2\) (d)

Xét phương trình hoành độ giao điểm của (P ) và (d)

(P ) và (d) tiếp xúc với nhau khi và chỉ khi phương trình trên có nghiệm kép

Lời giải chi tiết:

Bài 2: Phương trình đường thẳng qua điểm \((0; − 2)\)  nên \(b=– 2\), giả sử \(y = kx – 2\) (d)

Xét phương trình hoành độ giao điểm ( nếu có) của (P ) và (d):

\(2{x^2} = kx - 2 \)\(\;\Leftrightarrow 2{x^2} - kx + 2 = 0\,\,\,\,\,\left( * \right)\)

(P ) và (d) tiếp xúc với nhau khi và chỉ khi phương trình (*) có nghiệm kép

\( \Leftrightarrow \Delta  = 0 \Leftrightarrow {k^2} - 16 = 0 \Leftrightarrow k =  \pm 4.\)

Phương trình đường thẳng đi qua điểm \((0; − 2)\) và tiếp xúc với (P ) là :

\(y =  \pm 4x - 2.\)

LG bài 3

Phương pháp giải:

Đưa biểu thức về phương trình bậc hai của x, còn y là tham số.

Biện luận:  pt trên có nghiệm \(\Leftrightarrow ∆ ≥ 0\) giải ra ta tìm được GTLN của y

Lời giải chi tiết:

Bài 3: Mẫu số : \({x^2} + 1 \ne 0\), với mọi x.

Vậy : \(y = {x \over {{x^2} + 1}} \Leftrightarrow y{x^2} + y = x \)

\(\Leftrightarrow y{x^2} - x + y = 0\,\,\,\,\left( * \right)\)

Ta xem phương trình (*) là phương trình bậc hai của x, còn y là tham số.

+) Nếu \(y = 0\), phương trình (*) có nghiệm \(x = 0.\)

+) Nếu \(y \ne 0\), phương trình (*) có nghiệm \(\Rightarrow ∆ ≥ 0\)

\(1 - 4{y^2} \ge 0 \Leftrightarrow {y^2} \le {1 \over 4} \)

\(\Leftrightarrow \left| y \right| \le {1 \over 2} \Leftrightarrow  - {1 \over 2} \le y \le {1 \over 2}\)

Vậy giá trị lớn nhất của y là \({1 \over 2}\), dấu “=” xảy ra khi và chỉ khi :

\({1 \over 2}{x^2} - x + {1 \over 2} = 0 \Leftrightarrow x = 1.\)

 Loigiaihay.com

 


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài