Bài 16 trang 45 SGK Toán 9 tập 2

Bình chọn:
4.6 trên 67 phiếu

Giải bài 16 trang 45 SGK Toán 9 tập 2. Dùng công thức nghiệm của phương trình bậc hai

Đề bài

 Dùng công thức nghiệm của phương trình bậc hai để giải các phương trình sau:

a) \(2{x^2} - 7x + 3 = 0\);                b) \(6{x^2} + x + 5 = 0\);

c) \(6{x^2} + x - 5 = 0\);                  d) \(3{x^2} + 5x + 2 = 0\);

e) \({y^2} - 8y + 16 = 0\);                f) \(16{z^2} + 24z + 9 = 0\).

Phương pháp giải - Xem chi tiết

Xét phương trình: \(ax^2+bx+c=0\) (\(a \ne 0\)) và biệt thức: \(\Delta =b^2-4ac.\)

+) Nếu \(\Delta > 0\) thì phương trình có hai nghiệm phân biệt:

\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a};\ x_2=\dfrac{-b-\sqrt{\Delta}}{2a}\)

+) Nếu \(\Delta < 0\) thì phương trình vô nghiệm.

+) Nếu \(\Delta =0\) thì phương trình có hai nghiệm kép: \(x_1=x_2=\dfrac{-b}{2a}\).

Lời giải chi tiết

a) \(2{x^2} - 7x + 3 = 0\)

Ta có:  \(a = 2,\ b =  - 7,\ c = 3.\)

Suy ra \(\Delta  =b^2-4ac= {( - 7)^2} - 4.2.3 = 25 > 0\).

Do đó phương trình có hai nghiệm phân biệt:

\(x_1=\dfrac{-(-7)-\sqrt{25}}{2.2}=\dfrac{7-5}{4}=\dfrac{1}{2}\)

\({x_2} = \dfrac{-(-7)+\sqrt{25}}{2.2}=\dfrac{7+5}{4}=3\).

b) \(6{x^2} + x + 5 = 0\)

Ta có: \(a = 6,\ b = 1,\ c = 5\)

Suy ra  \(\Delta  = b^2-4ac={(1)^2} - 4.6.5 =  - 119< 0\).

Do đó phương trình vô nghiệm

c) \(6{x^2} + x - 5 = 0\)

Ta có: \(a = 6,\ b = 1,\ c =  - 5\)

Suy ra \(\Delta  = b^2-4ac={1^2} - 4.6.(-5) = 121 > 0 \)

Do đó phương trình có hai nghiệm phân biệt:

\({x_1} = \dfrac{-1+\sqrt{121}}{2.6}=\dfrac{-1+11}{12}=  \dfrac{5}{6}\)

\({x_2} = \dfrac{-1-\sqrt{121}}{2.6}=\dfrac{-1-11}{12}=  -1\).

d) \(3{x^2} + 5x + 2 = 0\)

Ta có: \(a = 3,\ b = 5,\ c = 2\)

Suy ra \(\Delta  = b^2 - 4ac ={5^2} - 4.3.2 = 1 > 0\)

Do đó phương trình có hai nghiệm phân biệt:

\({x_1} = \dfrac{-5+\sqrt 1}{2.3}=\dfrac{-4}{6} =-\dfrac{2}{3}\)

\({x_2} = \dfrac{-5-\sqrt 1}{2.3}=\dfrac{-6}{6} =-1\).

e) \({y^2} - 8y + 16 = 0\)

Ta có: \(a = 1,\ b =  - 8,\ c = 16\)

Suy ra \(\Delta  = b^2-4ac={( - 8)^2} - 4.1.16 = 0\)

Do đó phương trình có nghiệm kép:

\({y_1} = {y_2} =  - \dfrac{-(-8)}{2.1} = 4\)

f) \(16{z^2} + 24z + 9 = 0\)

Ta có: \(a = 16,\ b = 24,\ c = 9\)

Suy ra \(\Delta =b^2-4ac = {(24)^2} - 4.16.9 = 0\)

Do đó phương trình có hai nghiệm kép:

\({z_1} = {z_2} =  - \dfrac{24}{2.16} = \dfrac{-3}{4}\).

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan