Đề kiểm tra 15 phút - Đề số 1 - Bài 4 - Chương 4 - Đại số 9

Bình chọn:
4.9 trên 7 phiếu

Giải Đề kiểm tra 15 phút - Đề số 1 - Bài 4 - Chương 4 - Đại số 9

Đề bài

Bài 1: Giải phương trình :

a)\(2{x^2} - 5x + 2 = 0\)                      

b) \({x^2} - \left( {1 + \sqrt 2 } \right)x + \sqrt 2  = 0\)

Bài 2: Tìm m để phương trình \({x^2} + \left( {2m + 1} \right)x + {m^2} = 0\) có nghiệm kép và tính nghiệm kép với m vừa tìm được.

Bài 3: Tìm m để phương trình \({x^2} + 2x + m - 2 = 0\) có hai nghiệm phân biệt.

Lời giải chi tiết

Bài 1: a) \(a = 2;    b = − 5;  c = 2 \) \( \Rightarrow \Delta  = {b^2} - 4ac = 25 - 16 = 9\)

Phương trình có hai nghiệm : \({x_1} = {{5 + \sqrt 9 } \over 4}\) và \({x_2} = {{5 - \sqrt 9 } \over 4}\) hay \({x_1} = 2\) và \({x_2} = {1 \over 2}.\)

b)  \(a = 1\); \(b =  - \left( {1 + \sqrt 2 } \right);\)\(c = \sqrt 2 \)

\(\Delta  = {\left[ { - \left( {1 + \sqrt 2 } \right)} \right]^2} - 4.\sqrt 2  \)\(\;= 1 - 2\sqrt 2  + 2 = {\left( {1 - \sqrt 2 } \right)^2}\)

Phương trình có hai nghiệm :

\({x_1} = {{1 + \sqrt 2  + \left( {1 - \sqrt 2 } \right)} \over 2}\)  và \({x_2} = {{1 + \sqrt 2  - \left( {1 - \sqrt 2 } \right)} \over 2}\) hay \(x_1= 1\); \({x_2} = \sqrt 2 .\)

Bài 2: Phương trình có nghiệm kép \( \Leftrightarrow \Delta  = 0 \Leftrightarrow {\left( {2m + 1} \right)^2} - 4{m^2} = 0\)

\( \Leftrightarrow 4m + 1 = 0 \Leftrightarrow m =  - {1 \over 4}.\)

Nghiệm kép \(x =  - {b \over {2a}} \Leftrightarrow x = {{ - \left( {2m + 1} \right)} \over 2}\)

Khi \(m =  - {1 \over 4} \Rightarrow x =  - {1 \over 4}.\)

Phương trình có hai nghiệm phân biệt \( \Leftrightarrow \Delta  > 0 \Leftrightarrow 4 - 4\left( {m - 2} \right) > 0 \)

\(\Leftrightarrow 12 - 4m > 0 \Leftrightarrow m < 3.\)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com

Góp ý Loigiaihay.com, nhận quà liền tay