Bài 6 trang 111 Tài liệu dạy – học Toán 9 tập 2

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Cho cung AB trên đường tròn (O; R)

Đề bài

Cho cung AB trên đường tròn (O; R)

a) Tính \(\widehat {AOB}\) khi biết có độ dài \(l = \dfrac{{\pi R}}{4}\) .

b) Chọn điểm C trên đường tròn sao cho AC cắt đoạn OB và OAC là tam giác đều. Tính độ dài các cung lớn AC và  BC.

Phương pháp giải - Xem chi tiết

Sử dụng các công thức \(l = \dfrac{{\pi Rn}}{{180}}\).

Lời giải chi tiết

 

a) Ta có \(l = \dfrac{{\pi R}}{4} \Leftrightarrow \dfrac{{\pi Rn}}{{180}} = \dfrac{{\pi R}}{4}\)

\(\Leftrightarrow \dfrac{n}{{180}} = \dfrac{1}{4} \Leftrightarrow n = {45^0}\).

Vì \(\widehat {AOB}\) là góc ở tâm \( \Rightarrow \widehat {AOB} = sdcung\,AB = {45^0}\) (số đo góc ở tâm bằng số đo cung bị chắn).

b) Ta có \(sdcung\,AC = \widehat {AOC} = {60^0}\)

Khi đó độ dài cung lớn AC là độ dài của cung \({360^0} - {60^0} = {300^0} \Rightarrow \)độ dài cung lớn AC bằng \(\dfrac{{\pi R.300}}{{180}} = \dfrac{{5\pi R}}{3}\).

Ta có: \(cung\,AB + cung\,BC = cung\,AC\) \( \Rightarrow {45^0} + cung\,BC = {60^0}\)

\(\Leftrightarrow cung\,BC = {15^0}\).

Khi đó độ dài cung lớn BC là độ dài của cung \({360^0} - {15^0} = {345^0} \)

\(\Rightarrow \) độ dài cung lớn BC bằng \(\dfrac{{\pi R.345}}{{180}} = \dfrac{{23\pi R}}{{12}}\).

 Loigiaihay.com

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com