Bài 54 trang 12 SBT Hình học 12 Nâng cao>
Giải bài 54 trang 12 sách bài tập Hình học 12 Nâng cao. Hình chóp S.ABCD có đáy ABCD ...
Hình chóp S.ABCD có đáy ABCD là hình bình hành. Một mặt phẳng \(\left( P \right)\) cắt SA, SB, SC, SD theo thứ tự tại K, L, M, N. Chứng minh rằng :
LG a
\({V_{S.ABC}} = {V_{S.ACD}} = {V_{S.ABD}} = {V_{S.BCD}}\)
Lời giải chi tiết:
Dễ thấy các tam giác ABC, ACD, ABD, BCD đều có diện tích bằng nhau và bằng nửa diện tích S của hình bình hành ABCD ; các hình chóp S.ABC, S.ACD, S.ABD, S.BCD có chiều cao bằng nhau và bằng chiều cao h của hình chóp S.ABCD. Vậy
\(\eqalign{ & {V_{S.ABC}} = {V_{S.ACD}} = {V_{S.ABD}} = {V_{S.BCD}} \cr & = {{{V_{S.ABCD}}} \over 2} = {V \over 2}. \cr} \)
LG b
\({{SA} \over {SK}} + {{SC} \over {SM}} = {{SB} \over {SL}} + {{SD} \over {SN}}.\)
Lời giải chi tiết:
Ta có :
\(\eqalign{ & {{{V_{S.KLM}}} \over {{V \over 2}}} = {{SK} \over {SA}}.{{SL} \over {SB}}.{{SM} \over {SC}},\cr&{{{V_{S.KMN}}} \over {{V \over 2}}} = {{SK} \over {SA}}.{{SM} \over {SC}}.{{SN} \over {SD}} \cr & \cr} \)
Tương tự
\({{{V_{S.KLMN}}} \over {{V \over 2}}} = {{SL} \over {SB}}.{{SM} \over {SC}}.{{SN} \over {SD}} + {{SL} \over {SB}}.{{SN} \over {SD}}.{{SK} \over {SA}}\;\;\;\;(2)\)
Từ (1) và (2) suy ra
\({{SK} \over {SA}}.{{SL} \over {SB}}.{{SM} \over {SC}} + {{SK} \over {SA}}.{{SM} \over {SC}}.{{SN} \over {SD}} \)
\(= {{SL} \over {SB}}.{{SM} \over {SC}}.{{SN} \over {SD}} + {{SL} \over {SB}}.{{SN} \over {SD}}.{{SK} \over {SA}}.\)
Nhân hai vế với \({{SA} \over {SK}}.{{SB} \over {SL}}.{{SC} \over {SM}}.{{SD} \over {SN}},\) ta được đẳng thức phải chứng minh.
Loigiaihay.com
- Bài 53 trang 12 SBT Hình học 12 Nâng cao
- Bài 52 trang 12 SBT Hình học 12 Nâng cao
- Bài 51 trang 12 SBT Hình học 12 Nâng cao
- Bài 50 trang 11 SBT Hình học 12 Nâng cao
- Bài 49 trang 11 SBT Hình học 12 Nâng cao
>> Xem thêm
- Bài 1.1 trang 10 SBT Giải tích 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 trang 16 SBT Hình học 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 trang 67 SBT Hình học 12 Nâng cao
- Câu 4.25 trang 181 sách bài tập Giải tích 12 Nâng cao
- Câu 23 trang 211 sách bài tập Giải tích 12 Nâng cao