Bài 34 trang 10 SBT Hình học 12 Nâng cao


Giải bài 34 trang 10 sách bài tập Hình học 12 Nâng cao. Khối chóp S.ABC ...

Đề bài

Khối chóp S.ABC có đáy ABC là tam giác vuông cân đỉnh C và \(SA \bot \left( {ABC} \right),SC = a.\) Hãy tìm góc giữa hai mặt phẳng \(\left( {SCB} \right)\) và \(\left( {ABC} \right)\) để thể tích khối chóp là lớn nhất.

Lời giải chi tiết

Ta có \(BC \bot AC\) nên \(BC \bot SC\) (định lý ba đường vuông góc), suy ra góc \(SCA\) là góc giữa hai mặt phẳng \(\left( {SCB} \right)\) và \(\left( {ABC} \right)\).

Đặt \(\widehat {SCA} = x\left( {0 < x < {\pi  \over 2}} \right)\)

Khi đó :

\(\eqalign{  & SA = a{\mathop{\rm s}\nolimits} {\rm{inx}},AC = acosx.  \cr  & {V_{S.ABC}} = {{a{\mathop{\rm s}\nolimits} {\rm{inx}}} \over 3}.{{{a^2}{\rm{co}}{{\rm{s}}^2}x} \over 2} = {{{a^3}} \over 6}{\mathop{\rm s}\nolimits} {\rm{in}x}.co{s^2}x. \cr} \)

Xét hàm số \(y\left( x \right) = \sin {\rm{x}}{\cos ^2}x.\)

Ta có :

\(\eqalign{  y'\left( x \right) &= co{s^3}x - 2{\mathop{\rm cosx}\nolimits} .s{\rm{i}}{{\rm{n}}^2}{\rm{x }}\cr&= \cos x\left( {co{s^2}x - 2 + 2co{s^2}x} \right)  \cr  &  = cosx\left( {3{{\cos }^2}x - 2} \right) \cr&= 3{\mathop{\rm cosx}\nolimits} \left( {{\mathop{\rm cosx}\nolimits}  - \sqrt {{2 \over 3}} } \right)\left( {\cos x + \sqrt {{2 \over 3}} } \right). \cr} \)

Vì \(0 < x < {\pi  \over 2}\) nên \(\cos x\left( {{\mathop{\rm cosx}\nolimits}  + \sqrt {{2 \over 3}} } \right) > 0.\)

Gọi \(\alpha \) là góc sao cho \(\cos \alpha  = \sqrt {{2 \over 3}} ,0 < \alpha  < {\pi  \over 2}.\)

Ta có bảng biến thiên của hàm \(y\left( x \right) = {\mathop{\rm s}\nolimits} {\rm{inx}}.{\cos ^2}x:\)

Vậy VS.ABC đạt giá trị lớn nhất khi \(x = \alpha \) với \(0 < \alpha  < {\pi  \over 2}\) và \(\cos \alpha  = \sqrt {{2 \over 3}} .\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài