Bài 49 trang 11 SBT Hình học 12 Nâng cao>
Giải bài 49 trang 11 sách bài tập Hình học 12 Nâng cao. Cho khối lập phương ABCD.A’B’C’D’ ...
Đề bài
Cho khối lập phương ABCD.A’B’C’D’ có cạnh bằng a. Gọi K là trung điểm của DD’. Tính khoảng cách giữa CK và A’D.
Lời giải chi tiết
Gọi M là trung điểm của BB’.
Ta có \(A'M//KC\) nên
\(\eqalign{ & d\left( {CK,A'D} \right) = d\left( {CK,\left( {A'MD} \right)} \right) \cr & = d\left( {K,\left( {A'MD} \right)} \right). \cr} \)
Đặt \(d\left( {CK,A'D} \right) = x.\) Ta có
\({V_{A'.MDK}} = {V_{K.A'MD}} = {1 \over 3}{S_{A'MD}}.x\;\;\;(1)\)
Mặt khác
\({V_{A'.MDK}} = {V_{M.A'DK}}\)
\( = {1 \over 3}{S_{A'DK}}.d\left( {M,\left( {A'DK} \right)} \right)\)
\(= {1 \over 3}\left( {{1 \over 2}a.{1 \over 2}a} \right).a = {{{a^3}} \over {12}}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(2)\)
Từ (1) và (2) suy ra : \({S_{A'MD}}.x = {{{a^3}} \over 4}.\)
Hạ
\(\eqalign{ & DI \bot A'M \Rightarrow AI \bot A'M \cr & \Rightarrow AI.A'M = AA'.d\left( {M,AA'} \right) = {a^2} \cr&\Rightarrow AI = {{2a} \over {\sqrt 5 }} \cr & \Rightarrow D{I^2} = D{A^2} + A{I^2} = {a^2} + {{4{a^2}} \over 5} = {{9{a^2}} \over 5}\cr& \Rightarrow DI = {{3a} \over {\sqrt 5 }}. \cr} \)
Vậy \({S_{A'MD}} = {1 \over 2}DI.A'M = {1 \over 2}.{{3a} \over {\sqrt 5 }}.{{a\sqrt 5 } \over 2} = {{3{a^2}} \over 4}.\)
Từ (3) và (4) suy ra \(x = {a \over 3}.\)
Loigiaihay.com
- Bài 50 trang 11 SBT Hình học 12 Nâng cao
- Bài 51 trang 12 SBT Hình học 12 Nâng cao
- Bài 52 trang 12 SBT Hình học 12 Nâng cao
- Bài 53 trang 12 SBT Hình học 12 Nâng cao
- Bài 54 trang 12 SBT Hình học 12 Nâng cao
>> Xem thêm
- Bài 1.1 trang 10 SBT Giải tích 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 trang 16 SBT Hình học 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 trang 67 SBT Hình học 12 Nâng cao
- Câu 4.25 trang 181 sách bài tập Giải tích 12 Nâng cao
- Câu 23 trang 211 sách bài tập Giải tích 12 Nâng cao