Bài 1.77 trang 26 SBT Giải tích 12 Nâng cao>
Giải bài 1.77 trang 26 sách bài tập Giải tích 12 Nâng cao. Chứng minh rằng trong các hình hộp chữ nhật có đáy là một hình vuông và thể tích là 1000, hình lập phương có diện tích toàn phần là nhỏ nhất.
Đề bài
Chứng minh rằng trong các hình hộp chữ nhật có đáy là một hình vuông và thể tích là 1000, hình lập phương có diện tích toàn phần là nhỏ nhất.
Lời giải chi tiết
Gọi \(x,h\) lần lượt là kích thước cạnh đáy và chiều cao của hình hộp chữ nhật.
Thể tích \(V = {x^2}h = 1000 \Rightarrow h = \frac{{1000}}{{{x^2}}}\)
Diện tích toàn phần:
\({S_{tp}} = 4.xh + 2.{x^2}\) \( = 4x.\frac{{1000}}{{{x^2}}} + 2{x^2}\) \( = 2{x^2} + \frac{{4000}}{x}\)
Ta có:
\({S_{tp}} = 2{x^2} + \frac{{4000}}{x}\) \( = 2{x^2} + \frac{{2000}}{x} + \frac{{2000}}{x}\)
Áp dụng BĐT Cô si cho 3 số dương \(2{x^2},\frac{{2000}}{x},\frac{{2000}}{x}\) ta có:
\(\begin{array}{l}{S_{tp}} = 2{x^2} + \frac{{2000}}{x} + \frac{{2000}}{x}\\ \ge 3\sqrt[3]{{2{x^2}.\frac{{2000}}{x}.\frac{{2000}}{x}}}\\ = 3\sqrt[3]{{8000000}}\\ = 600\end{array}\)
\( \Rightarrow \min {S_{tp}} = 600\) khi
\(\begin{array}{l}2{x^2} = \frac{{2000}}{x} \Leftrightarrow 2{x^3} = 2000\\ \Leftrightarrow {x^3} = 1000 \Leftrightarrow x = 10\\ \Rightarrow h = \frac{{1000}}{{{{10}^2}}} = 10\end{array}\)
Vậy diện tích toàn phần nhỏ nhất khi hình hộp đó là hình lập phương.
Loigiaihay.com
- Bài 1.78 trang 26 SBT Giải tích 12 Nâng cao
- Bài 1.79 trang 26 SBT Giải tích 12 Nâng cao
- Bài 1.80 trang 26 SBT Giải tích 12 Nâng cao
- Bài 1.81 trang 27 SBT Giải tích 12 Nâng cao
- Bài 1.82 trang 27 SBT Giải tích 12 Nâng cao
>> Xem thêm
- Bài 1.1 trang 10 SBT Giải tích 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 trang 16 SBT Hình học 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 trang 67 SBT Hình học 12 Nâng cao
- Câu 4.25 trang 181 sách bài tập Giải tích 12 Nâng cao
- Câu 23 trang 211 sách bài tập Giải tích 12 Nâng cao